Planning Proposal

Amendment to the Zoning and Height of Building Map for Lake Macquarie Private Hospital - Gateshead

Draft Amendment to Lake Macquarie Local Environmental Plan 2014
Post-Gateway version

Local Government Area:	Lake Macquarie City Council (Council)
Name of Draft LEP:	Draft Amendment to Lake Macquarie Local Environment Plan 2014 – Lake Macquarie Private Hospital
Subject Land:	Lake Macquarie Private Hospital 3 Sydney Street, 2 & 4 Casey Street, 36 & 38 Pacific Highway, Gateshead
Land Owners:	Ramsay Health Care Australia Pty Ltd
Applicant:	Akalan Projects on behalf of Ramsay Health Care Australia Pty Ltd
Department of Planning, Industry and Environment Reference Number:	PP-2021-6648
Gateway Determination Date:	27/09/2022
Council Reference Number	RZ/13/2021
Document Date:	October 2022
Document Author:	Amber Stewart – Strategic Planner
Tables	Table 1: Proposed changes LMLEP 2014 Maps and Instrument
	Table 2: Planning Proposal consistency with relevant SEPPs
	Table 3: Planning Proposal consistency with applicable Section 9.1 Ministerial Directions
Maps	1. Locality Map
	2. Subject Land Map
	3. Current Land Zoning
	4. Proposed Land Zoning
	5. Existing Height of Building Map
	6. Proposed Height of Building Map
Attachments	Attachment 1: Visual Impact Assessment
	Attachment 2: Shadow analysis
	Attachment 3: Traffic and parking assessment
	Attachment 4: Mine Subsidence Risk study
	Attachment 5: High-level social and economic benefits assessment

CONTENTS

PART 1 – OBJECTIVES OR INTENDED OUTCOMES	3
PART 2 – EXPLANATION OF PROVISIONS	4
PART 3 – JUSTIFICATION	5
PART 4 – COMMUNITY CONSULTATION	13
PART 5 – CONCLUSION	13
PART 6 – MAPPING	14
PART 7 – PROJECT TIMELINE	20
ATTACHMENTS	20

Version	Date	Details
1	June 2022	Council endorsement for Gateway Determination
2	October 2022	Post-Gateway Public Exhibition

INTRODUCTION

This planning proposal relates to Lake Macquarie Private Hospital (LMPH), 3 Sydney Street, 2 & 4 Casey Street, 36 & 38 Pacific Highway, Gateshead.

The hospital opened in 1973 with initially 36 beds, offering general surgery, orthopaedic, gynaecology and elective cosmetic surgery. The hospital has grown to 187 beds, expanded its services to include cardio-vascular, intensive care ward, emergency department, and a specialist radiology and pathology suite.

The hospital is now operating at or near capacity and requires additional space to provide services that meet the needs of the growing Lake Macquarie population and wider Hunter region. The proponent is undertaking a State Significant Development Application (SSD-38025700) with the NSW Department of Planning and Environment (The Department) to enable the development of a hospital expansion.

The proponents are seeking an amendment to the height of building map for the northern part of the site, from 10m to 37m to facilitate the expansion of the hospital. A building height limit of 37m (which equates to 10 storeys) was identified as the height required to contain the new theatres, beds, car parking and consulting suites needed to meet the projected demands.

Following Gateway Determination, The Department have proposed also applying an SP2 Infrastructure (Health Services Facilities) zoning to the site.

PART 1 – OBJECTIVES OR INTENDED OUTCOMES

The intended outcome of this planning proposal is to facilitate a State Significant Development (SSD) proposal for the expansion of LMPH, which will:

- deliver on identified strategic goals for Gateshead as a regionally significant health precinct;
- enable a hospital expansion that supports future healthcare needs of our community;
- encourage a cluster of medical facilities and services at Gateshead, including LMPH, which opens possibilities for an expanded, regionally significant health precinct. This precinct would complement the increased density and diversity of housing in surrounding areas such as Windale, Whitebridge and Kahibah;
- capture significant local, regional and state, social and economic benefits including substantial private financial investment, construction and operational employment and multiplier effects, improved healthcare product and other public benefits;
- facilitate delivery of public domain improvements, improved connectivity and activation;
 provide infrastructure and related uses, and prevent development that is not compatible with or that may detract from the provision of infrastructure, also provide land required for the development or expansion of major health, education and community facilities.

While this planning proposal seeks to enable an SSD through local provisions, the physical development is being considered separately through the SSD assessment process. It should be noted other applications could be made under the proposed planning controls should this specific development not proceed.

PART 2 – EXPLANATION OF PROVISIONS

The proposed objectives will be achieved by amending the LMLEP 2014 with the following changes:

Table 1: P	Table 1: Proposed Changes to LMLEP 2014 Maps and Instrument		
Item No.	Address	Explanation of provisions	
1	Part Lot 90 DP 1233497, Lot 6,7 and 8 DP 24268	Height increase from 10m to 37m	
		Amend Height of Buildings Map from 10m to 37m	
		(See sites identified on the Height of Buildings Maps as	
	shown in PART 6).		
2	Lot 90 DP 1233497, Lot 2	Rezone from R3 Medium Density Residential to SP2	
	DP 1223084, Lot 4,6,7 and	Infrastructure (Health Services Facilities).	
	8 DP 24268		

PART 3 – JUSTIFICATION

A. NEED FOR THE PLANNING PROPOSAL

1. Is the planning proposal a result of any strategic study or report?

No. The proposal was put forward by the applicant to facilitate the expansion of the existing hospital as it is operating at near capacity.

2. Is the planning proposal the best means of achieving the objectives or intended outcomes, or is there a better way?

Yes, a planning proposal to amend the LMLEP 2014 is considered the most appropriate means of achieving the identified objectives and intended outcomes.

A building height limit of 37m (which equates to 10 storeys) was identified as the height required to contain the new theatres, beds, car parking and consulting suites needed to meet the projected demands.

B. RELATIONSHIP TO STRATEGIC PLANNING FRAMEWORK

3. Is the planning proposal consistent with the objectives and actions contained within the applicable regional or sub-regional strategy (including the Sydney Metropolitan Strategy and exhibited draft strategies)?

Hunter Regional Plan 2036 (HRP)

The planning proposal supports the Hunter Regional Plan's (HRP) aim of growing the region's economy and supporting the growth of local communities. The expansion of the hospital supports increased demands as the Lake Macquarie and Hunter populations grow. It also provides a number of new jobs through both the initial construction and ongoing operation of the hospital.

The site is located within the Greater Newcastle area. The HRP 2036 recognises that this area is a growing area for health services with an aim to develop a national Centre of Excellence for Health and Education.

<u>Direction 8: Promote innovative small business and growth in the service sectors</u>

The planning proposal seeks to support the expansion of the existing hospital. As the hospital is located adjacent to the Pacific Highway the expansion of the hospital meets the goals of this direction as it will expand opportunities for health services to use the hospital.

<u>Direction 26: Deliver infrastructure to support growth and communities</u>

This direction speaks to supporting growing communities through the expansion of infrastructure, including health services. This proposal is consistent with this direction as it will support the expansion of the hospital and its services, supporting expected demand from the growing and aging population that is forecast for Lake Macquarie and the Greater Hunter region.

Draft Hunter Regional Plan 2041 (DHRP 2041)

The existing Hunter Regional Plan includes a commitment for its regular review. The review provides an opportunity to consider the changes in the last 5 years that affect the region, the challenges and opportunities ahead, and update the plan to respond.

The draft Hunter Regional Plan 2041 (the draft Plan) builds on the previous plan which was finalised in October 2016 and resets the regional plan priorities to ensure it continues to respond to the region's needs for the next 20 years.

Objective 7: Plan for businesses and services at the heart of healthy, prosperous and innovative communities

Objective 7 speaks to the need to have services, including health care readily accessible to the growing population. This proposal is consistent with this direction as it will facilitate the expansion of the hospital. Expanding the hospital will provide new services to support the current and future population of the region.

In summary, the planning proposal is considered to be consistent with the draft Hunter Regional Plan 2041, as it will contribute to supporting the growing and aging population that the region will experience. It is also located in a geographically advantageous position that is not at risk to flooding or bushfire with easy access to the Pacific Highway. This is important for ensuring the ongoing resilience for the region.

Greater Newcastle Metropolitan Plan 2036 (GNMP)

The planning proposal is consistent with and supports the objectives of Greater Newcastle Metropolitan Plan 2036 (GNMP) specifically Strategy 4: Grow health precincts and connect the health network. The GNMP identifies the site as being part of a major health precinct (Figure 17 from the GNMP), which has the ability to provide additional job opportunities and support an aging population.

Figure 1 – Major Health Precincts in Greater Newcastle – Figure 17 from GNMP

4. Is the planning proposal consistent with the local council's Community Strategic plan or other local strategic plan?

Community Strategic Plan 2017-2027 (CSP)

The Lake Macquarie City Community Strategic Plan 2017-2027 has been developed with the people of Lake Macquarie outlining the vision and values of the community and providing clear strategies to achieve this. The Proposal is consistent with the vision for a diverse economy as well as lifestyle and wellbeing. The planning proposal will support a sustainable and diverse economy whilst providing the community with access to adaptable and inclusive community and health services.

Local Strategic Planning Statement (LSPS)

The planning proposal is consistent with and supports the Lake Macquarie City LSPS, its planning priorities and actions for the City. The LSPS identifies that the hospital is part of the North East Growth Area and envisages the Gateshead health precinct to grow and expand (page 42). Specifically, the Proposal supports the principles of the LSPS that aim to respond to and encourage development of new education, health and innovation clusters especially Action 3.10 Prepare a Gateshead Medical Precinct concept plan to facilitate the orderly development of this medical precinct including allied health and other supporting businesses. This Proposal intends to support the expansion of the LMPH encouraging more employment opportunities and densities in the Gateshead Health Precinct. Therefore, it is

considered that this Planning Proposal aligns with the broad directions of the Lake Macquarie City LSPS.

C. Is the planning proposal consistent with State Environmental Planning Policies? (SEPPs)

An assessment of the planning proposal and its consistency with the applicable State Environmental Planning Policies is provided in Table 2 below.

Table 2: Planning proposal consistency with relevant SEPPs

SEPP and Relevance	Implications
State Environmental Planning Po	licy (Planning Systems) 2021
Chapter 2 – State and regional development	The proposal is to facilitate the expansion of the hospital. This development will be facilitated through an SSD application. The proposal is consistent with this policy and will assist the assessment of the SSD for the expansion of the hospital.
	licy (Industry and Employment) 2021
Chapter 3 – Advertising and signage	Any signage associated with future commercial premises on the Site would be assessed and approved in accordance with this SEPP.
State Environmental Planning Po	licy (Transport and Infrastructure) 2021
Chapter 2 – Infrastructure The aim of the policy is to facilitate the expansion of the hospital.	This SEPP provides for certain proposals, known as Traffic Generating Development, to be referred to Transport for NSW for concurrence. Referral may be required for the expansion of the existing LMPH where the size or capacity satisfies certain thresholds. Schedule 3 lists the types of development that are defined as Traffic Generating Development. Details of the development would be confirmed at the development application stage following the planning proposal. The SEPP enables development for the purposes of Health Services Facilities within the SP2 zone and the proposed expansion of LMPH is permitted with consent on the site.

D. Is the proposal consistent with Ministerial Directions made under S 9.1?

An assessment of the planning proposal and its consistency with the applicable Ministerial Directions is provided in Table 3 below.

Table 3: Planning Proposal consistency with relevant Ministerial S 9.1 Directions

Relevant s9.1 Directions and Objectives	Consistency/Comment
Focus Area 1: Planning Systems	
1.1 Implementation of Regional Plans Give legal affect to the vision, land use strategy, goals, directions and actions contained in Regional Plans 1.3 Approval and Referral Requirements Ensure that LEP provisions encourage the efficient and appropriate assessment of development.	Consistent. The proposal is consistent with the Greater Newcastle Metropolitan Plan 2036 and the overarching Hunter Regional Plan 2036 and draft Hunter Regional Plan 2041. The proposed zone will facilitate the expansion of the hospital and the availability of local jobs and health services. Consistent. The proposal is consistent with this direction as it does not seek to include provisions which require concurrence, consultation or referral of development applications to a Minister or public authority and will not identify development
	as designated development.
1.4 Site Specific Provisions Discourage unnecessarily restrictive sitespecific planning controls.	Consistent. The proposed change to the height of building map and zone will allow the future expansion of the hospital. It is considered not restrictive. The detail of this development is subject to a separate SSD application.
Focus area 3: Biodiversity and Conservation	
3.1 Conservation Zones To protect and conserve environmentally sensitive areas.	Consistent. The proposed amendment does not impact any Conservation zoned land.
3.2 Heritage Conservation To conserve items, areas, objects and places of environmental heritage significance and indigenous heritage significance. Focus area 4: Resilience and Hazards	Consistent: There are no known, listed or identified items of indigenous heritage significance; or other areas, objects and environmental places of significance applicable to the site.
4.1 Flooding (a) Ensure that development of flood prone land is consistent with the NSW Government's Flood Prone Land Policy and the principles of the Floodplain Development Manual 2005, and	Consistent. The site is not identified as flood prone land.

Relevant s9.1 Directions and Objectives	Consistency/Comment
(b) Ensure that the provisions of a LEP on	
flood prone land are commensurate with	
flood behavior and include consideration of	
the potential flood impacts on and off the	
subject land.	
4.2 Coastal Management	Consistent. The Land is not mapped within
To protect and manage coastal areas of	the Coastal Management SEPP 2018 as a
NSW.	Coastal area or Coastal Environmental
Now.	Area.
4.3 Planning for Bushfire Protection	This site is not identified as bushfire prone
(a) Protect life, property and the	land.
environment from bush fire hazards, by	
discouraging the establishment of	
incompatible land uses in bush fire prone	
areas, and	
(b) Encourage sound management of bush	
fire prone areas.	
4.4 Remediation of Contaminated Land	Consistent. The site is not identified as
The objective of this direction is to reduce	contaminated land. The existing uses of the
the risk of harm to human health and the	site are for car parking and residential
environment by ensuring that	accommodation and the subject sites have
contamination and remediation are	not been used for any activity listed as
considered by planning proposal	potentially contaminating land use or
authorities.	activity.
	The proposal will facilitate the expansion of
	the existing hospital located to the south of
	the subject sites.
4.5 Acid Sulfate Soils	This site is not identified as containing acid
The objective of this direction is to avoid	sulfate soils.
significant adverse environmental impacts	
from the use of land that has a probability	
of containing acid sulfate soils.	
4.6 Mine Subsidence and Unstable Land	The subject site is located within a mine
The objective of this direction is to prevent	subsidence district. Preliminary studies
damage to life, property and the	have been undertaken which did not
environment on land identified as unstable	identify any known concerns which would
or potentially subject to mine subsidence.	prohibit development. Subsidence Advisory
	NSW will be included in the agency
	consultation of this proposal prior to
	undertaking community consultation.
	Further detailed studies will also be
	undertaken as part of the State Significant
	Development Application.

Relevant s9.1 Directions and Objectives

Focus area 5: Transport and Infrastructure

5.1 Integrating Land Use and Transport

- Ensure that urban structures, building forms, land use locations, development designs, subdivision and street layouts achieve the following planning objectives:
- (a) improving access to housing, jobs and services by walking, cycling and public transport, and
- (b) increasing the choice of available transport and reducing dependence on cars, and
- (c) reducing travel demand including the number of trips generated by development and the distances travelled, especially by car, and
- (d) supporting the efficient and viable operation of public transport services, and(e) providing for the efficient movement of freight.

Consistency/Comment

Consistent. The proposal seeks to increase the maximum permitted building height, to facilitate the expansion of the existing hospital. The site is highly accessible by an extensive local and regional road network including Pacific Highway. Bus stops along Pacific Highway provide services between Newcastle and Belmont. The provision of additional health services on the site will make use of established road infrastructure and public transport bus routes and improve viability of the public transport system through increased demand.

Focus area 6: Housing

6.1 Residential Zones

- (a) Encourage a variety and choice of housing types to provide for existing and future housing needs,
- (b) Make efficient use of existing infrastructure and services and ensure that new housing has appropriate access to infrastructure and services, and
- (c) Minimise the impact of residential development on the environment and resource lands.

Inconsistent. The site is currently zoned R3 Medium Density Residential, however, is used for the purposes of an approved health services facility. The conditions of the Gateway Determination require the zone to be changed to SP2 Infrastructure consistent with the existing and ongoing use of the site. The proposal is consistent with the Hunter Regional Plan 2036, the Greater Newcastle Metro Plan 2036 and the Lake Macquarie Local Strategic Planning Statement and is consistent with this Direction.

Even though this proposal is inconsistent, it is justified due to the existing use, intended strategic direction and public benefit provided by the hospital

E. Environmental, Social and Economic Impact

1. Is there any likelihood that critical habitat or threatened species, populations or ecological communities or their habitats, will be adversely affected as a result of the proposal?

The site is extensively developed with a mix of hospital uses, and residential and car parking associated with the adjoining hospital. There are no known critical habitat or threatened species, populations, ecological communities or their habitats that will be adversely affected due to the proposal.

2. Are there any other likely environmental effects as a result of the Planning Proposal and how are they proposed to be managed?

The potential environmental impacts relate to:

- The visual impact to the surrounding area and overshadowing.
- Traffic and parking
- Mine subsidence

Visual Impact

A Visual Impact Assessment (Attachment 1) and shadow analysis (Attachment 2) has been undertaken by the proponent to investigate the potential visual and solar impacts to neighbouring sites and the surrounding area.

Given the location of the proposed additional building height, overshadowing will mostly impact the existing hospital site.

While there will be some visual and overshadowing impact from the future development, these impacts are typical of an area undergoing transition and are considered acceptable when balanced against the strategic direction for the precinct and the social and economic benefits.

<u>Traffic</u>

A traffic and parking assessment (Attachment 3) has been undertaken by the proponent to support the SSD proposal. The report concludes that the existing road network and intersections are adequate to cope with the proposed hospital expansion. While the planning proposal seeks to amend planning controls, rather than proposing a specific development outcome, the report demonstrates that existing infrastructure can support development under the proposed changes. As such, the proposed change to the maximum Height of Building (HOB) will not result in demand for additional road infrastructure upgrades.

Mine Subsidence

A desktop Mine Subsidence Risk study (Attachment 4) has been undertaken which did not identify any known concerns which would affect the proposed changes to the maximum permitted height of buildings.

3. Has the Planning Proposal adequately addressed any social and economic effects?

Yes. A high-level assessment of the social and economic benefits has been undertaken to support the SSD proposal (Attachment 5). The proposal to increase the maximum permitted building height will facilitate expansion of the hospital providing additional health services for the community in an easily accessible location. The planning proposal will enable an expansion of the hospital which has economic benefits to the local community with potential growth on approximately 189 new ongoing jobs (e.g. nurses, administration staff, cleaners, food preparation) and staff medical specialist roles (e.g. surgeons, anaesthetist and other specialists).

Expansion of the hospital facilitated by this planning proposal is also likely to create an additional 800 - 1,000 direct and in-direct jobs during the construction period.

Overall, the proposal will facilitate the expansion of the hospital which will result in positive economic and social outcomes for Lake Macquarie and the region.

F. State and Commonwealth Interests

4. Is there adequate public infrastructure for the Planning Proposal?

The Site is serviced by existing infrastructure that is capable of servicing expansion of LMPH under the proposed changes to the LEP. In particular the Site is accessible by the established local and regional road network, including Pacific Highway which is also a key public transport bus route.

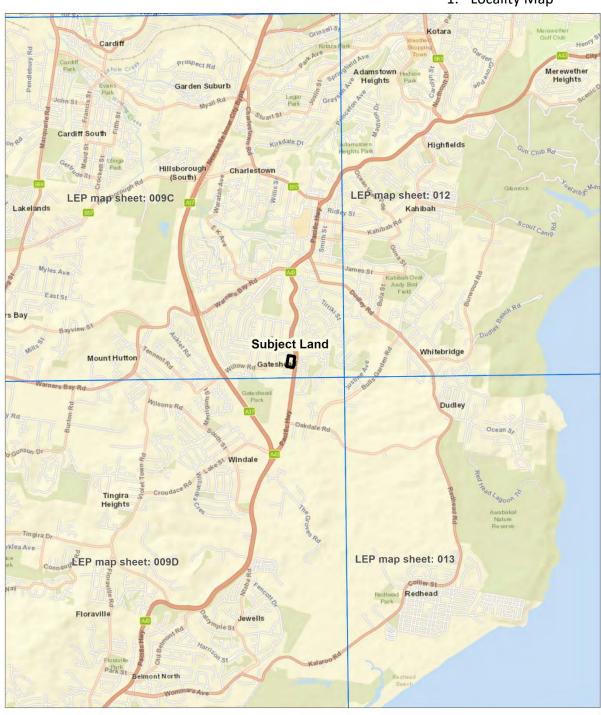
5. What are the views of State and Commonwealth public authorities consulted in accordance with the gateway determination?

Consultation with State and Commonwealth public authorities will occur in accordance with the Gateway determination. Consultation will occur with the following authorities:

- Health NSW
- Subsidence Advisory NSW, and
- Transport for NSW

PART 4 – COMMUNITY CONSULTATION

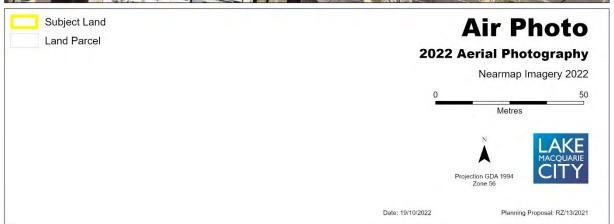
The planning proposal will be formally exhibited in accordance with the Lake Macquarie Community Participation Plan and the Gateway determination. It is recommended that the planning proposal be exhibited for at least 28 days.

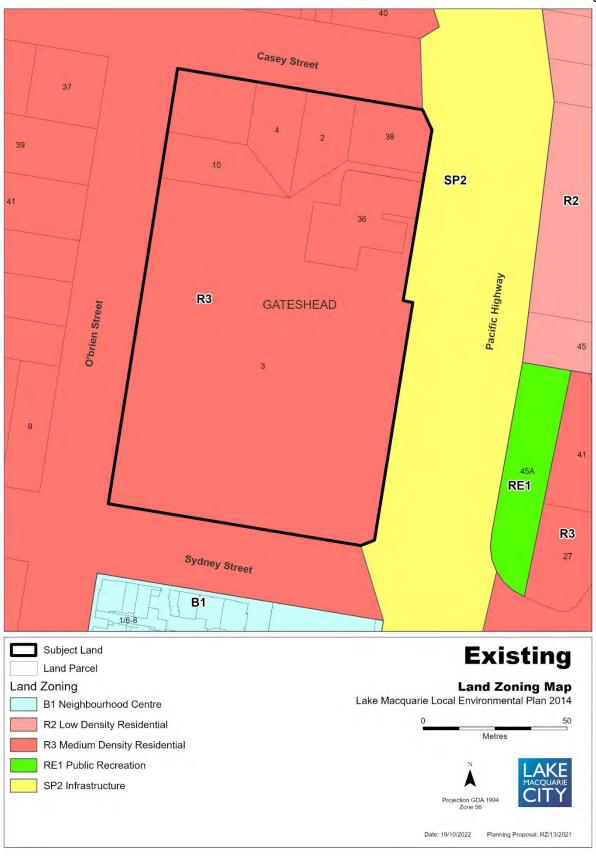

PART 5 – CONCLUSION

This planning proposal seeks to rezone the site to SP2 Infrastructure (Health Services Facilities) and also seeks to increase heights across Part Lot 90 DP 1233497, Lot 6,7 and 8 DP 24268 from 10m to 37m to facilitate an SSD proposal for the expansion of the LMPH.

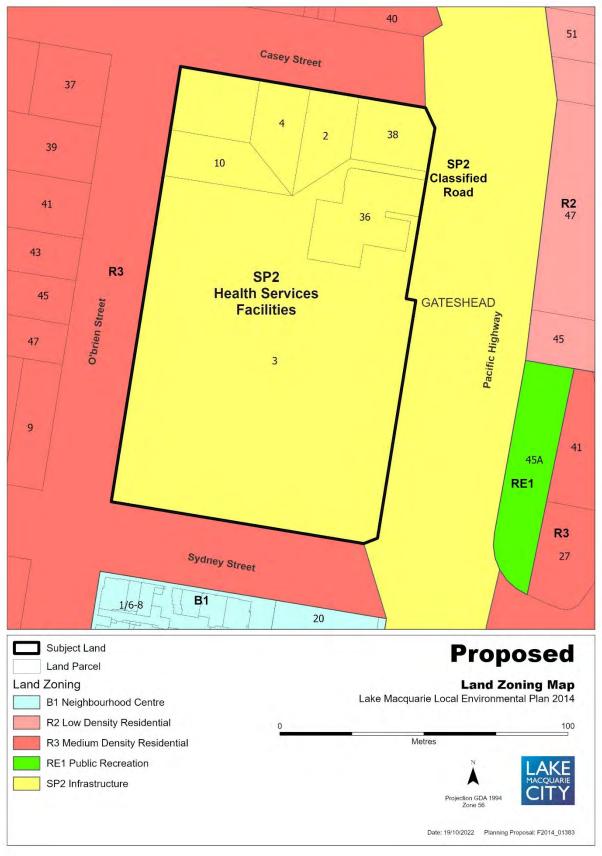
This proposal is acceptable based on the strategic direction for the precinct and the social and economic benefits it provides.

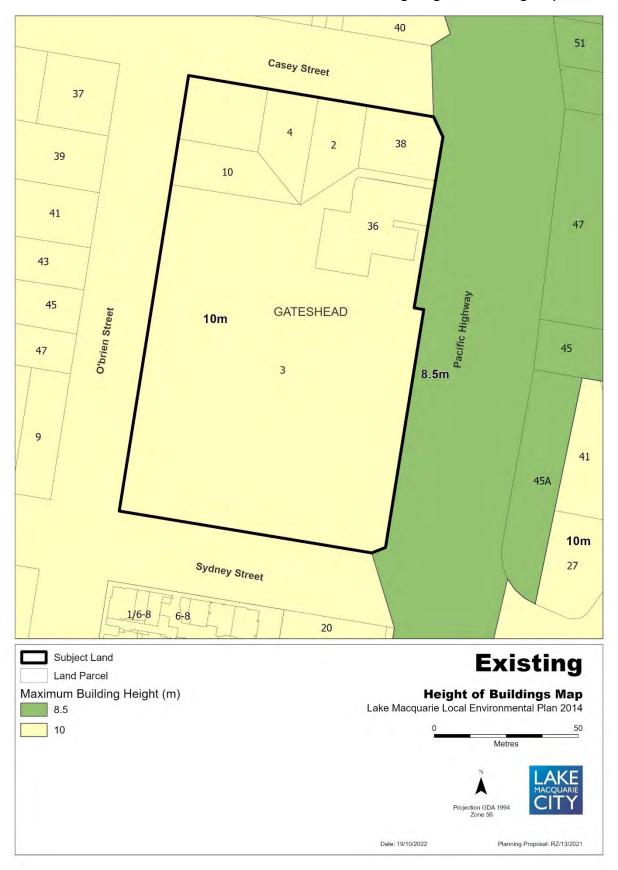
PART 6 – MAPPING


1. Locality Map



2. Subject Land Map




3. Current Land Zoning

4. Proposed Land Zoning

5. Existing Height of Building Map

6. Proposed Height of Building Map

PART 7 – PROJECT TIMELINE

Stage	Timeframe (working days) and/or date
Gateway determination	25 days
	Received 27/09/22
Pre-exhibition (including agency consultation)	50 days
Public exhibition (commencement and completion dates)	28 days
Consideration of submissions	20 days
Post exhibition review and additional studies (if required)	55 days
Submission to Department to finalise LEP	10 days
Gazettal of LEP Amendment	45 days

ATTACHMENTS

Attachment 1: Visual Impact Assessment

Attachment 2: Shadow analysis

Attachment 3: Traffic and parking assessment

Attachment 4: Mine Subsidence Risk study

Attachment 5: High-level social and economic benefits assessment

Attachment 1: Visual Impact Assessment

LAKE MACQUARIE PRIVATE HOSPITAL

Visual Impact Assessment Report

November 2021

Title: Lake Macquarie Private Hospital Visual Impact Assessment Report

Prepared for: Ramsay Health Care

Date: 29.11.2021

Status: Final

Prepared by: Hatch RobertsDay Approved by: Hatch RobertsDay

DISCLAIMER & COPYRIGHT

Hatch prepared this document on the request, and for the benefit only, of Ramsay Health Care (Instructing Party) for the purpose of understanding the visual impact of the proposed development and not for any other purpose or use (the "Purpose"). To the extent permitted by applicable law, Hatch expressly disclaims all liability, whether direct or indirect, to the Instructing Party which relies or purports to rely on this document for any purpose other than the Purpose, and to any other person which relies or purports to rely on this commentary for any purpose whatsoever (including the Purpose). The information presented herein has been compiled from a number of sources using a variety of methods. Hatch does not attempt to verify the accuracy, validity or completeness of any information supplied to Hatch by third parties or information extracted from SixMaps and Nearmap. The photomontages contained herein are estimates depending on the availability of reference points; they represent a good approximation of likely visual impact to a sufficient level of accuracy for the purpose of this document.

Hatch makes no warranty, express or implied, and assumes no liability or responsibility for the accuracy, validity or comprehensiveness of this document, or the misapplication or misinterpretation by third parties of its contents. This document is meant to be read as a whole, and sections of the document must not be read or relied upon out of context. This document cannot be copied or reproduced in whole or part for any purpose without the prior written consent of Hatch.

TABLE OF CONTENTS

INTRODUCTION AND METHODOLOGY	4
Introduction	
Assessment Methodology	
SITE ANALYSIS	10
Local Context	
VISUAL ANALYSIS	14
Vantage Points	
Visual Impact Assessment	
RESPONSE TO SCENIC MANAGEMENT GUIDELINES	32
CONCLUSION	33

INTRODUCTION & METHODOLOGY

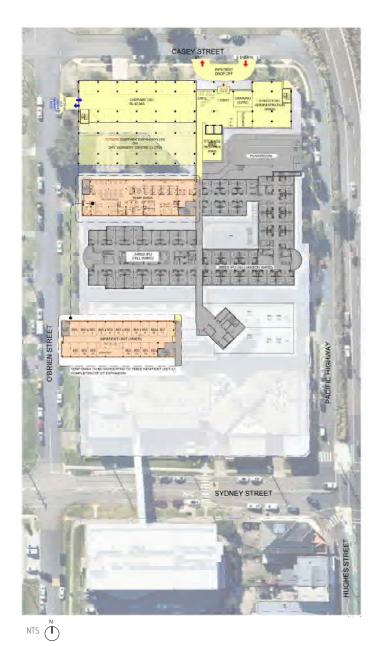
INTRODUCTION

PURPOSE OF THIS REPORT

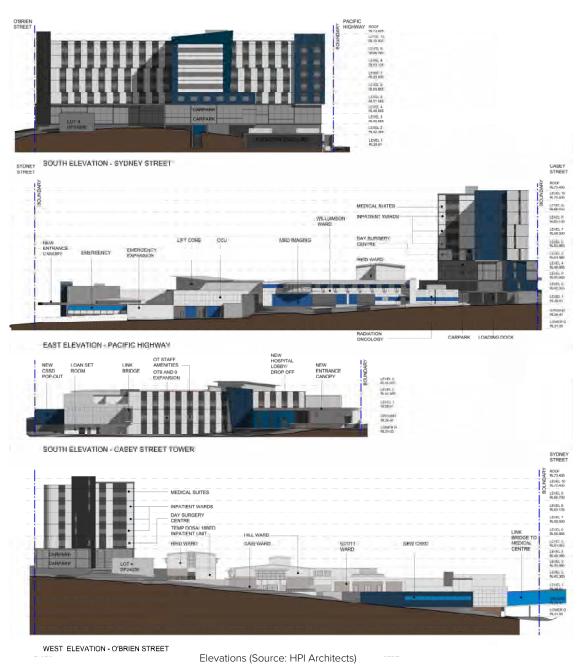
Hatch RobertsDay has been commissioned by Ramsay health Care to prepare this visual impact assessment (VIA) report in support of the planning proposal to amend Lake Macquarie Local Environmental Plan 2014 to include additional building height on the proposed site described as 3 Sydney Street, 2 & 4 Casey Street, 36 & 38 Pacific Highway, Gateshead.

The VIA investigates on the possible visual impacts that proposed building may have on the surrounding and adjacent publicly accessible areas, and provides detailed assessment of the sensitivity and magnitude of the changes from different vantage points in comparison to the existing.

PROPOSAL OVERVIEW


The proposed site is regular in shape and has a total area of approximately 14,041m2. The Site presently contains the existing LMPH which is operated by Ramsay Health Care. LMPH adjoins low density residential development to the north, east and west of the Site as well as shop top housing and specialised medical consulting suites to the south.

The proposed amendment to LMLEP intends to facilitate the future redevelopment of the Site for an expansion to the existing Lake Macquarie Private Hospital (LMPH) comprising additional inpatient beds, inpatient theatres, day surgery theatres, consulting suites, oncology chairs and a pharmacy.


The concept design has been informed by detailed site analysis and consideration of the surrounding context in order to provide an optimal development outcome that capitalises on the strategic potential of the land, uplifts the surrounding public domain and provides a high level of amenity.

Proposal (Source: HPI Architects)

Proposed Plan- Level 2 (Source: HPI Architects)

Hatch RobertsDay | Northside west Clinic Stage 2

ASSESSMENT METHODOLOGY

CONTEXTUAL ANALYSIS

A number of locations were inspected to evaluate the scenic qualities and visual prominence of Lake Macquarie Private Hospital site to identify potential vantage viewpoints.

The key vantage points for the purpose of view analysis have been determined through identification of physical absorption capacity and visibility of the site as well as focus on the areas that are more likely to be affected by the proposal.

DETAILED ASSESSMENT METHODOLOGY

A qualitative assessment of the visual impacts and changes to landscape has been undertaken based on the following guidelines:

- RMS Environmental Impact Assessment Guidance Note: Guidelines for landscape character and visual impact assessment (2013)
- The Guidance for Landscape and Visual Impact Assessment (GLVIA), Third Edition (2013) prepared by the Landscape Institute and Institute of Environmental Management and Assessment; and Visual Representation of Development Proposals, Technical Guidance Note 02 (2017)
- The guidelines describe the assessment as a way to define the changes to the physical landscape and day to day visual effects of a project on people's views. The determination of the impacts is based on the following criteria:

Sensitivity is defined as "The sensitivity of a landscape character zone or view and its capacity to absorb change" (EIA No4 Guidelines, 2013, RMS).

The visual sensitivity of a view is defined by the nature of the view and its duration. A higher visual sensitivity is given to views which would be seen for longer, by a higher numbers of potential viewers and where visual amenity is important to viewers (value of the view). The context of the view and the distance from the views are also used to determine the visual sensitivity level of the landscape.

Magnitude is defined as "The measurement of the scale, form and character of a development proposal when compared to the existing condition" (EIA No4 Guidelines, 2013, RMS).

It reflects the degree of visual contrast between the proposal and the existing landscape setting. In the case of visual assessment this also relates to how far the proposal is from the viewer.

For the purposes of this assessment the criteria listed in the following tables have been specifically defined for sensitivity and magnitude of change for both the assessment of landscape character and the visual impact to viewpoints. The combined assessment of sensitivity and magnitude provides an overall rating of the visual impact, as shown in the Impact Level table.

VISUALISATION OF THE DEVELOPMENT AND PROPOSED SCENARIOS

Finalisation of the design and supporting technical

documentation enabled the selected vantage points to be realistically documented.

The accuracy of the existing and proposed images is based on the following process and information:

- Creating a 3D model of the terrain/ surrounding context based on the site survey information as well as the contour and cadastre information downloaded from SixMaps and Nearmap aerial image (georeferenced to GDA94/MGA56 geographical)
- Digitally linking the 3D massing model of the proposed built form provided by the project architect in the context 3D model
- Positioning camera in 3D software based on the viewpoints coordinate data recorded during site visit
- Importing actual photographs in 3D software to prepare proposed scenarios from vantage points based on existing coordination and identified reference points
- Photo matching and rendering to reflect landscaping, intended materials and lighting

Photomontages are intended to be printed at A3 and to be viewed at a distance of 300mm. That is the distance between the eye and the image and will enable the viewer to experience an approximation of what the proposed view would look like in the real world.

MAGNITUDE

		Very High	High	Moderate	Low	Very Low	Negligible
	Very High	Substantial	Very High	High	High/Moderate	Moderate	None
/IT/	High	Very High	High	High/ Moderate	Moderate	Moderate/Low	None
NSITI	Moderate	High	High/Moderate	Moderate	Moderate/Low	Low	None
SEN	Low	High / Moderate	Moderate	Moderate/ Low	Low	Low/ Negligible	None
	Very Low	Moderate	Moderate/ Low	Low	Low/ Negligible	Negligible	None

Table 1. Impact Level (Matrix of Sensitivity & Magnitude)

Sensitivity	Criteria
Very High	Nationally designated landscape with high conservation or heritage value and absence of landscape detractors. Protected views identified in planning policy designation, State designated publicly accessible landscape or heritage assets.
High	Locally designated valued landscape with many distinctive characteristics and very few landscape detractors. Public views with a high visual prominence and a high number of users in close proximity, private views in close proximity, passive recreational receptors where the landscape has a high visual value. Travellers on road, rail or other transport routes where travel involves recognised scenic routes.
Moderate	Landscape with some distinctive characteristics and few landscape detractors. Public views with a moderate visual value and a moderate number of users in close proximity, active recreational receptors where the landscape has little visual value.
Low	Landscape with few distinctive characteristics and presence of landscape detractors. Public views with a little visual value and a low number of users, where receptors are mostly road users in motor vehicles or passers-by, people at their work place or views from commercial buildings where the landscape has some visual value.
Very Low	Landscape with no distinctive characteristics and presence of many landscape detractors. Public views with none visual value and a limited number of users not in close proximity, people at their work place or views from commercial buildings where the landscape has little or no visual value.

Table 2.Sensitivity Ranking Criteria

Magnitude	Criteria
Very High	Total loss or major change to key characteristics of the existing landscape. The proposal forms a significant and immediately apparent part of the scene. It significantly contrasts in scale and character (either existing or planned). It is severely detrimental to the quality of the scene.
High	Notable loss or change to key characteristics of the existing landscape. The proposal forms a dominant feature of the scene to which other elements become subordinate. It contrasts in scale and character (either existing or planned). It is reducing the quality of the scene.
Moderate	Partial loss or change to key characteristics of the existing landscape. The proposal forms a visible new element within the overall scene, yet one that is relatively compatible with the surrounding character (either existing or planned) and view's composition. It is possibly reducing the quality of the scene.
Low	Minor loss or change to key characteristics of the existing landscape. The proposal constitutes only a minor component of the wider view, that is compatible with the surrounding character (either existing or planned) and view's composition.
Very Low	Limited or no loss or change to key characteristics of the existing landscape. The proposal constitutes only a minor component of the wider view, which might be missed by the casual observer or receptor. Awareness of the proposal would not have an effect on the overall quality of the scene.
Negligible	No change in the landscape or view.

Table 3. Magnitude Ranking Criteria

SITE ANALYSIS

LOCAL CONTEXT

LOCAL CONTEXT

The proposed site is located within the suburb of Gateshead which forms part of the Lake Macquarie local government area (LGA). It is situated approximately 15km south west of Newcastle Central Business District (CBD). The Site affords road linkages to Pacific Highway and Newcastle Inner City Bypass. The Site is also highly accessible via public transport including bus services on Pacific Highway and Oxford Street.

The surrounding context exhibits a number of residential and recreation uses, mainly characterised by low density residential housing shop top housing and specialised medical consulting suites known as Lake Macquarie Specialist Centre. It is noted that the Site comprises an existing health services facility known as the LMPH and has been integrated harmoniously within its context.

Sportfields

Existing Lake Macquarie Private Hospital

St Mary's Catholic College

Low Density Residential

Commercial/ Retail

Local School

LAKE MACQUARIE SCENIC MANAGEMENT GUIDELINES 2013

Lake Macquarie Scenic Management Guidelines document guides decisions regarding scenic and landscape values at the planning proposal stage. The visual impact analysis considers the following guidelines to ensure the scenic and landscape values are protected surrounding the site and provide responses to the relevant guidelines.

LANDSCAPE TYPE

The Scenic Management Guidelines introduces four landscape types for Lake Macquarie LGA. The proposed site is located in the **Hinterland** landscape type of Lake Macquarie LGA where views of the lake or coast are generally not available.

LOCATIONS SENSITIVE TO VISUAL CHANGE

Significant natural landscape features, natural landscape types with inherent natural values and landscapes with heritage or cultural values are identified as visually sensitive landscapes in the Lake Macquarie Scenic Management Guidelines. The proposed site is within an area which is not identified as part of lake or coastal landscape and does not have any conservation values, indigenous landscapes and other heritage significance. Therefore, the proposed site is not considered to be a visually sensitive landscape. However, the site is located along Pacific Highway with potentially a high visibility from the main road and a high visual sensitivity to change from this location.

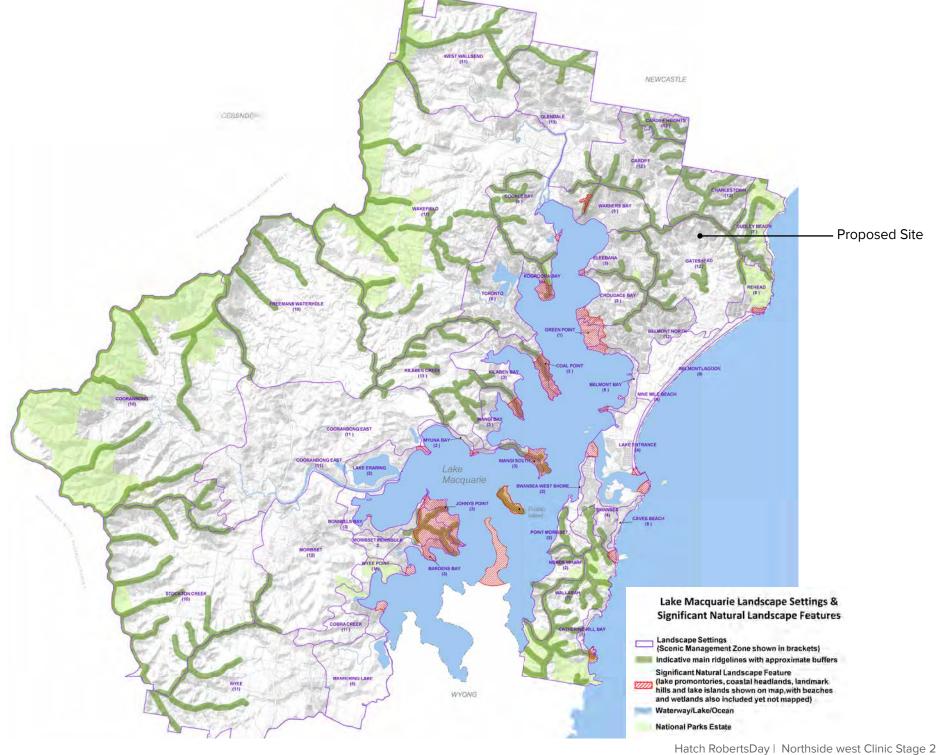
SCENIC MANAGEMENT ZONES

The proposed site is within **Gateshead** landscape setting and **12** (hinterland, moderate settlement) Scenic Management Zone.

GATESHEAD

A moderate level of development exists around the proposal, with residential areas consisting of mostly detached housing. Mix of uses present, including a dominance of health facilities, commercial and industrial.

The Lake Macquarie Scenic Management Guidelines requires future developments to have regards to protecting native vegetation and vegetation in and around residential areas and commercial centres. Any views of development from main roads should be softened by screening vegetation and appropriate design measures such as setbacks.


Any development within these areas is to satify a number of guidelines which are covered on page 32 of this report.

COMMERCIAL DEVELOPMENT AND TOWN CENTRES

The Guidelines recommends following design measures to improve visual outcomes in the category of Commercial Development and Town Centres:

- Ensure all opportunities taken to increase street trees and other streetscape improvements;
- Where suitable reduce the width of street pavements through measures such as widening footpaths and breaking-up car parking lanes with landscaping, this can encourage outdoor café dining which will activate the street;
- Identify existing view corridors to surrounding natural features such as the lake, coastline or western ranges and ensure these are preserved and enhanced where possible;
- Any proposed commercial/industrial development, particularly along main roads and town centres, should be treated with non-garish (i.e. overly bright) colours, limit overwhelming signage and increase amenity through appropriate landscaping;
- Identify opportunities to introducing view corridors when new developments are proposed; and
- Maintain a human-like scale to provide suitable amenity to centres through the use of continuous low awnings.

Refer to page 32 for our response to the quidelines where applicable.

VISUAL ANALYSIS

VANTAGE POINTS

THE VISUAL CATCHMENT

Visibility

The visibility of a site is influenced by a number of factors. These include physical factors such as topography, the pattern and alignment of streets, character of open space, type of vegetation, and the ability of the existing and future elements of the landscape setting to physically hide, screen or disguise the proposed development. It also includes other factors such as distance, direction and angle of view as well as the siting and scale of the proposal.

Due to the existing highway and location of the site as a corner lot, land to the immediate east and north is considered to have the greatest potential for visual exposure of the proposal. In addition, due to the low density character of the precinct and relatively larger number of local residents which may be exposed to the proposal, Casey Street was considered to also be of particular interest as part of the VIA.

Visual Receptors

People within the visual catchment who will be affected by the changes in views and visual amenity are referred to as visual receptors. there are a number of different types of visual receptor for the proposal:

- Travellers on Pacific Highway from north and south- high number of receptors
- Member and visitors of the educational facilities from east- medium number of receptors
- Residents at home and visitors from north and west- low number of receptors
- People engaged in outdoor recreation from south west- medium number of receptors

SELECTION OF VANTAGE POINTS

The key vantage points for the purpose of visual impact assessment have been determined through identification of visual catchment and visibility of the site as well as focus on the areas that are more likely to be affected by the proposal. This includes nearby public receivers and significant vantage points in the broader public domain.

The key vantage points analysed include:

- Public open space along Johnsons Creek
- Pacific Highway
- Surrounding streets including Casey Street,
 O'Brien Street and Oxford Street
- St Paul's Primary School

66

Landscape and Visual
Assessment (LVA) is an
essential tool of reconciling
development with
landscape and scenic
values and promoting
better outcomes for our
communities.

Guidance Note for Landscape and Visual Assessment, 2018

VISUAL IMPACT ASSESSMENT

Viewpoint 1- from public open space along Johnsons Creek

Google Earth Coordinate: 32°58′55.4″S 151°41′15.7″E

HighModerateLowVery LowNegligibleVery HighHighHigh/ModerateModerateNoneHighHigh/ ModerateModerateModerate/LowNone

\perp	High	Very High	High	High/ Moderate	Moderate	Moderate/Low	None
ISITI	Moderate	High	High/Moderate	Moderate	Moderate/Low	Low	None
SEN	Low	High / Moderate	Moderate	Moderate/ Low	Low	Low/ Negligible	None
	Very Low	Moderate	Moderate/ Low	Low	Low/ Negligible	Negligible	None

MAGNITUDE

Impact Level - Existing context (Matrix of Sensitivity & Magnitude)

Very High

Substantial

Verv Hiah

MAGNITUDE

		Very High	High	Moderate	Low	Very Low	Negligible
	Very High	Substantial	Very High	High	High/Moderate	Moderate	None
<u></u> ∠∐√	High	Very High	High	High/ Moderate	Moderate	Moderate/Low	None
ISITI	Moderate	High	High/Moderate	Moderate	Moderate/Low	Low	None
SEN	Low	High / Moderate	Moderate	Moderate/ Low	Low	Low/ Negligible	None
	Very Low	Moderate	Moderate/ Low	Low	Low/ Negligible	Negligible	None

Impact Level - Potential Future context (Matrix of Sensitivity & Magnitude)

Viewpoint 1

The aim of assessing the view is:

- To understand the visual impact of the proposal viewed from the public open space where people are engaged in outdoor recreation
- To assess to what degree the existing vegetation and structures screen or disguise the future development
- To test the extent to which the change of built elements may alter the existing character of the view

Sensitivity

The sensitivity of view from the public open space along Johnsons Creek factors the following:

- The public open space is used for passive and active recreation including walking, exercising and relaxing. Users engaged in passive recreation are more sensitive to visual change of their surroundings
- High numbers of receptors

However, the visual value is considered to be low due to the existing urban character and landscape detractors. As a result, the sensitivity of the view is considered MODERATE.

Magnitude

The magnitude of the proposal in this view is considered MODERATE in existing context and NEGLIGIBLE in potential future context, due to:

- Proposal forms a relatively dominant feature of the scene and contrasts in scale and massing with the existing low density character. However, the extent of the area over which the changes are visible is low. In other words, the change to the view's composition is relatively low
- Proposal is in the distance
- Proposal will not be visible from this location in the potential future context

The visual impact for this view is assessed as MODERATE in existing context and NONE in potential future context.

Existing

Proposed

Viewpoint 2- from Pacific Highway

Google Earth Coordinate: 32°59'02.2"S 151°41'30.5"E

MAGNITUDE

		Very High	High	Moderate	Low	Very Low	Negligible
	Very High	Substantial	Very High	High	High/Moderate	Moderate	None
XII/	High	Very High	High	High/ Moderate	Moderate	Moderate/Low	None
NSITIV	Moderate	High	High/Moderate	Moderate	Moderate/ Low	Low	None
SEN	Low	High / Moderate	Moderate	Moderate/ Low	Low	Low/ Negligible	None
	Very Low	Moderate	Moderate/ Low	Low	Low/ Negligible	Negligible	None

Impact Level (Matrix of Sensitivity & Magnitude)

Viewpoint 2

The aim of assessing the view is:

- To understand the visual impact of proposed built forms viewed from the main highway
- To assess to what degree the existing structures and buildings screen or disguise the future development
- To test the extent to which the change of built elements may alter the existing character of the view

Sensitivity

The view from Pacific Highway considered to have MODERATE sensitivity due to:

- Although the number of receptors is considered to be high, they have short term views to the proposal
- Receptors are mostly travellers on road that are less likely to notice, appreciate or be concentrating on views
- Public view has limited visual value due to the existing urban character with limited natural elements

Magnitude

The magnitude of the proposal in this view is considered LOW, due to:

- Proposal is in the distance
- Proposal is partly screened by the existing structures and vegetation
- The proportion of the view occupied by the proposed development is low

The visual impact for this view is assessed as MODERATE/ LOW, which is the combination of the sensitivity and magnitude of impact.

Proposed

Viewpoint 3- from Casey Street

Google Earth Coordinate: 32°58'47.9"S 151°41'24.6"E

Viewpoint 3

The aim of assessing the view is:

- To understand the visual impact of proposed built forms viewed from the surrounding residential street
- To assess to what degree the existing vegetation screen or disguise the future development
- To test the extent to which the change of built elements may alter the existing character of the view

MAGNITUDE

		Very High	High	Moderate	Low	Very Low	Negligible
SITIVITY	Very High	Substantial	Very High	High	High/Moderate	Moderate	None
	High	Very High	High	High/ Moderate	Moderate	Moderate/Low	None
	Moderate	High	High/Moderate	Moderate	Moderate/Low	Low	None
SES	Low	High / Moderate	Moderate	Moderate/ Low	Low	Low/ Negligible	None
	Very Low	Moderate	Moderate/ Low	Low	Low/ Negligible	Negligible	None

Impact Level - Existing context (Matrix of Sensitivity & Magnitude)

MAGNITUDE

		Very High	High	Moderate	Low	Very Low	Negligible
	Very High	Substantial	Very High	High	High/Moderate	Moderate	None
SITIVITY	High	Very High	High	High/ Moderate	Moderate	Moderate/Low	None
	Moderate	High	High/Moderate	Moderate	Moderate/Low	Low	None
SENSI	Low	High / Moderate	Moderate	Moderate/ Low	Low	Low/ Negligible	None
	Very Low	Moderate	Moderate/ Low	Low	Low/ Negligible	Negligible	None

Impact Level - Potential Future context (Matrix of Sensitivity & Magnitude)

Sensitivity

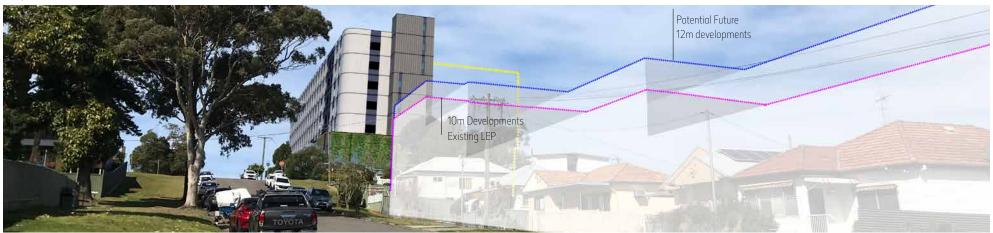
The view from Casey Street is considered to have MODERATE sensitivity due to:

- Public view is from a low density residential street
- Although public view has limited visual value, visual amenity is important to receptors which are mainly the local residents
- Moderate numbers of receptors in close proximity

Magnitude

The magnitude of the proposal in this view is considered HIGH in existing context and

MODERATE in potential future context, due to:


- Proposal forms a relatively dominant feature of the scene and contrasts in scale and massing with the existing low density character. However, the extent of the area over which the changes are visible is low
- Proposal is partly screened by existing vegetation, including large trees
- There will be less visual contrast between the proposal and the surrounding setting in the potential future context which reduces the magnitude

The visual impact for this view is assessed as HIGH/MODERATE in existing context and MODERATE in potential future context.

Proposed

Viewpoint 4- from O'Brien Street

Google Earth Coordinate: 32°58'45.9"S 151°41'29.3"E

Viewpoint 4

The aim of assessing the view is:

- To understand the visual impact of proposed built forms viewed from the surrounding residential street
- To assess to what degree the existing vegetation screen or disguise the future development
- To test the extent to which the change of built elements may alter the existing character of the view

MAGNITUDE

		Very High	High	Moderate	Low	Very Low	Negligible
	Very High	Substantial	Very High	High	High/Moderate	Moderate	None
SITIVITY	High	Very High	High	High/ Moderate	Moderate	Moderate/Low	None
	Moderate	High	High/Moderate	Moderate	Moderate/Low	Low	None
SEN	Low	High / Moderate	Moderate	Moderate/ Low	Low	Low/ Negligible	None
	Very Low	Moderate	Moderate/ Low	Low	Low/ Negligible	Negligible	None

Impact Level - Existing context (Matrix of Sensitivity & Magnitude)

MAGNITUDE

		Very High	High	Moderate	Low	Very Low	Negligible
	Very High	Substantial	Very High	High	High/Moderate	Moderate	None
SITIVITY	High	Very High	High	High/ Moderate	Moderate	Moderate/Low	None
	Moderate	High	High/Moderate	Moderate	Moderate/Low	Low	None
SEN	Low	High / Moderate	Moderate	Moderate/ Low	Low	Low/ Negligible	None
	Very Low	Moderate	Moderate/ Low	Low	Low/ Negligible	Negligible	None

Impact Level - Potential Future context (Matrix of Sensitivity & Magnitude)

Sensitivity

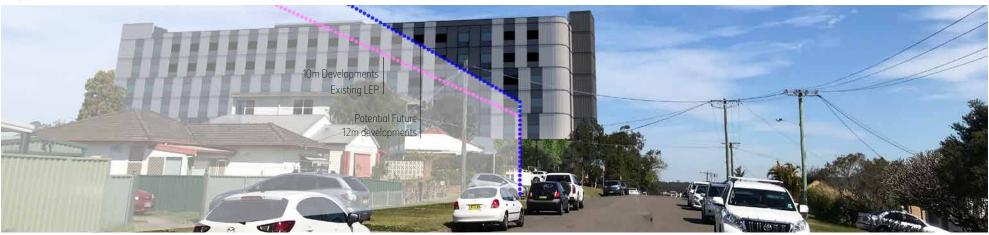
The view from O'Brien Street is considered to have MODERATE sensitivity due to:

- Public view is from a low density residential street
- Although public view has limited visual value, visual amenity is important to receptors which are mainly the local residents
- Moderate numbers of receptors in close proximity

Magnitude

The magnitude of the proposal in this view is considered VERY HIGH in existing context and

MODERATE in potential future context, due to:


- The proposal forms a dominant feature of the scene and contrasts in scale and massing with the existing low density character
- The proportion of the view occupied by the proposal is high. As a result, the change to the view's composition is relatively high
- There will be less visual contrast between the proposal and the surrounding setting in the potential future context- The proposal will be largely screened

The visual impact for this view is assessed as HIGH in existing context and MODERATE in potential future context.

Proposed

Viewpoint 5- from Oxford Street

Google Earth Coordinate: 32°58'43.2"S 151°41'32.3"E

Viewpoint 5

The aim of assessing the view is:

- To understand the visual impact of proposed built forms viewed from the main highway and adjacent residential street
- To assess to what degree the existing structures and buildings screen or disguise the future development
- To test the extent to which the change of built elements may alter the existing character of the view

MAGNITUDE

		Very High	High	Moderate	Low	Very Low	Negligible
	Very High	Substantial	Very High	High	High/Moderate	Moderate	None
/ITY	High	Very High	High	High/ Moderate	Moderate	Moderate/Low	None
SENSITIVIT	Moderate	High	High/Moderate	Moderate	Moderate/Low	Low	None
SEN	Low	High / Moderate	Moderate	Moderate/ Low	Low	Low/ Negligible	None
	Very Low	Moderate	Moderate/ Low	Low	Low/ Negligible	Negligible	None

Impact Level - Existing context (Matrix of Sensitivity & Magnitude)

MAGNITUDE

		Very High	High	Moderate	Low	Very Low	Negligible
	Very High	Substantial	Very High	High	High/Moderate	Moderate	None
SENSITIVITY	High	Very High	High	High/ Moderate	Moderate	Moderate/Low	None
	Moderate	High	High/Moderate	Moderate	Moderate/Low	Low	None
SEN	Low	High / Moderate	Moderate	Moderate/Low	Low	Low/ Negligible	None
	Very Low	Moderate	Moderate/ Low	Low	Low/ Negligible	Negligible	None

Impact Level - Potential Future context (Matrix of Sensitivity & Magnitude)

Sensitivity

The view from Oxford Street is considered to have LOW sensitivity due to:

- Receptors are mostly travellers on road that are less likely to notice, appreciate or be concentrating on views
- Public view has limited visual value due to the existing urban character with limited natural elements
- Low number of receptors from Oxford Street.
 The viewpoint is also representative of the
 view from Pacific Highway. In this case,
 number of receptors is considered to be high
 however, they have short term views to the
 proposal.

Magnitude

The magnitude of the proposal in this view is considered HIGH in existing context and MODERATE in potential future context, due to:

- The proposal forms a relatively dominant feature of the scene and contrasts in scale and massing with the existing low density character. However, it is partly screened by the existing landscape detractors including housing, structures and utility poles
- There will be less visual contrast between the proposal and the surrounding setting in the potential future context which reduces the magnitude

The visual impact for this view is assessed as MODERATE in existing context and MODERATE/LOW in potential future context.

Proposed

Viewpoint 6- from St Paul's Primary School

Google Earth Coordinate: 33°48'43.1"S 150°58'29.6"E

MAGNITUDE

		Very High	High	Moderate	Low	Very Low	Negligible
	Very High	Substantial	Very High	High	High/Moderate	Moderate	None
XII/	High	Very High	High	High/ Moderate	Moderate	Moderate/Low	None
ISITI	Moderate	High	High/Moderate	Moderate	Moderate/Low	Low	None
SENSI	Low	High / Moderate	Moderate	Moderate/Low	Low	Low/ Negligible	None
	Very Low	Moderate	Moderate/ Low	Low	Low/ Negligible	Negligible	None

Impact Level (Matrix of Sensitivity & Magnitude)

Viewpoint 6

The aim of assessing the view is:

- To understand the visual impact of proposed built forms viewed from the surrounding educational facilities
- To assess to what degree the existing structures and buildings screen or disguise the future development
- To test the extent to which the change of built elements may alter the existing character of the view

Sensitivity

The sensitivity of view from St Paul's Primary School has LOW sensitivity due to:

- The attention of people will be focused on their work and activities, not on their surrounding
- Students engaged in active recreation are less sensitive to visual change of their surroundings

Magnitude

The magnitude of the proposal in this view is considered MODERATE due to:

- The proposal forms a relatively dominant feature of the scene and contrasts in scale and massing with the existing low density character. However, the extent of the area over which the changes are visible is low.
- Proposal is not in close proximity and is partly screened by existing school's buildings and facilities

The visual impact for this view is assessed as MODERATE/ LOW, which is the combination of the sensitivity and magnitude of impact.

Existing Proposed Building

Proposed

RESPONSE TO SCENIC MANAGEMENT GUIDELINES

Guidelines

View corridors to the lake, coast and western ranges along streets, within public reserves and from town centres are retained and enhanced where possible

Car parks should be sited and designed to not dominate views from public areas or main roads

New and increased recreational activities within public reserves may be suitable, yet should aim to preserve and improve important natural features and public access

Existing ridgeline vegetation which provides a dominant backdrop to views from main roads, the lake and coast is retained

opportunities to rehabilitate any degraded areas are identified

Any proposed commercial/industrial development along main roads, in particular, should be treated with non-garish (i.e. overly bright) colours, limit overwhelming signage and increase amenity through appropriate landscaping

Neighbourhood centres should be enhanced with landscape improvements and street tree planting

Any views of development from the coast or lake should be softened by screening vegetation and appropriate design measures such as set-backs

Green breaks that provide visual relief to the urban area should be preserved, and enhanced, where possible

Our Response

There is no view corridor to the lake, coast or any significant ranges around the proposal.

The proposal accommodates ground floor active uses along Pacific Highway to create visual interest and activation. The car park facade is integrated into design and screened by greenery. Therefore, it is not considered to be a dominant feature when viewed from surrounding vantage points.

There is no recreational activities as a result of the proposal. No natural features or public spaces will be affected.

Pacific Highway is providing views to the northern and southern ridgelines (refer to page 15). These views are not affected by the proposed development.

Not applicable.

The proposed modular facade is treated with non-garish colours and some neutral tones which blend in with the natural surroundings. The facade incorporates greenery with climbing plants to increase the visual amenity and soften the views.

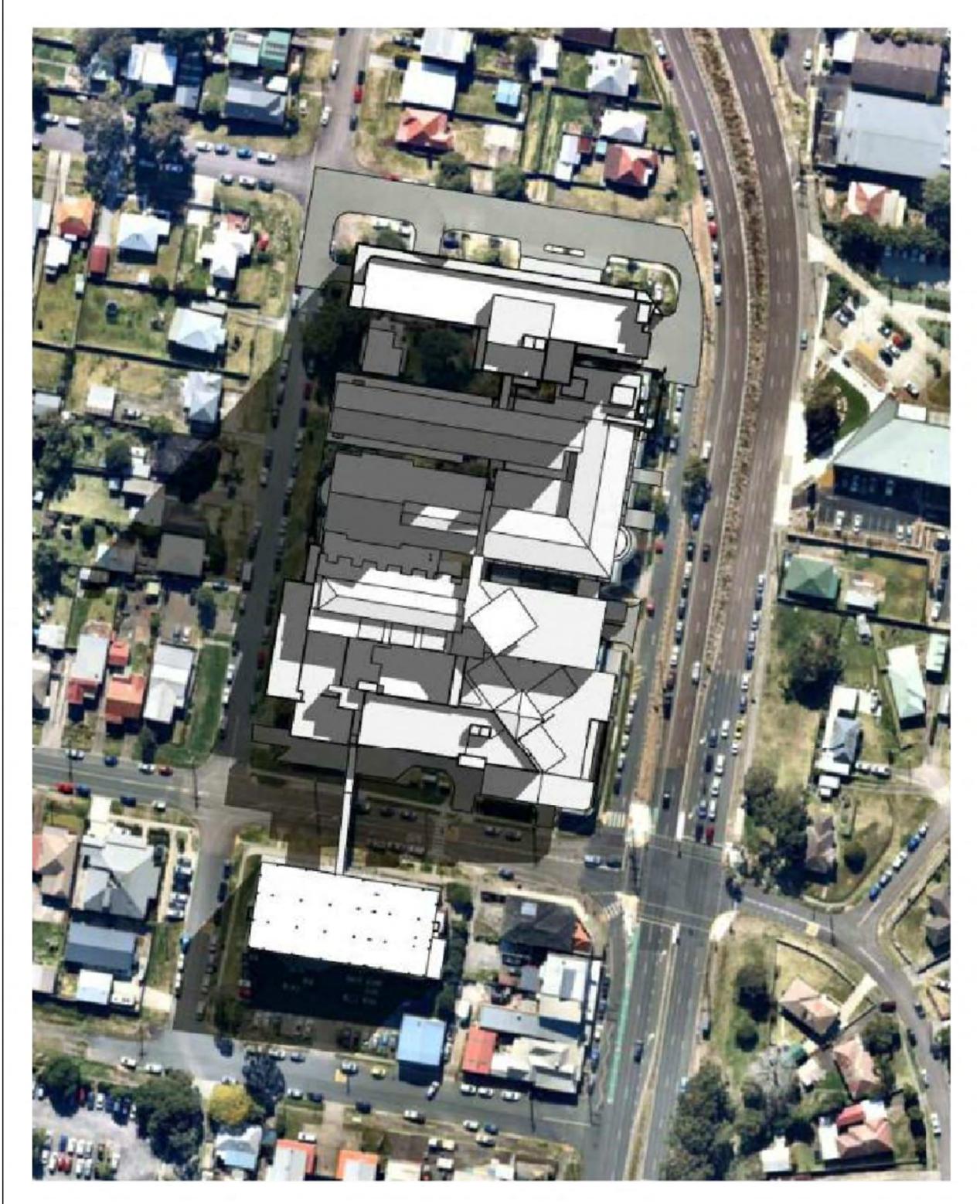
Street trees are retained which reduce the visual impact perceived from the surrounding main roads.

Not applicable.

The area surrounding the site is not highly developed (mainly low density detached housing) which requires less visual relief. However, the proposal incorporates green facade, facade articulation and adequate setbacks to reduce the bulk and provide some visual relief in the built form.

CONCLUSION

In general, the visual sensitivity of the views are considered Moderate to Low. The proposal is located in the Hinterland landscape type of Lake Macquarie LGA where views of the lake or coast are not available. The area surrounding the proposal does not have any scenic or conservation values and is not considered to be a visually sensitive landscape. However, the proposed site is fronting Pacific Highway with a high visibility which increases the visual sensitivity to change. It is argued that receptors in Pacific Highway are mostly travellers on road that are passing through therefore have short term views and are less likely to notice, appreciate or be concentrating on views. In addition, surrounding local streets are low traffic volume roads with a low number of potential viewers.

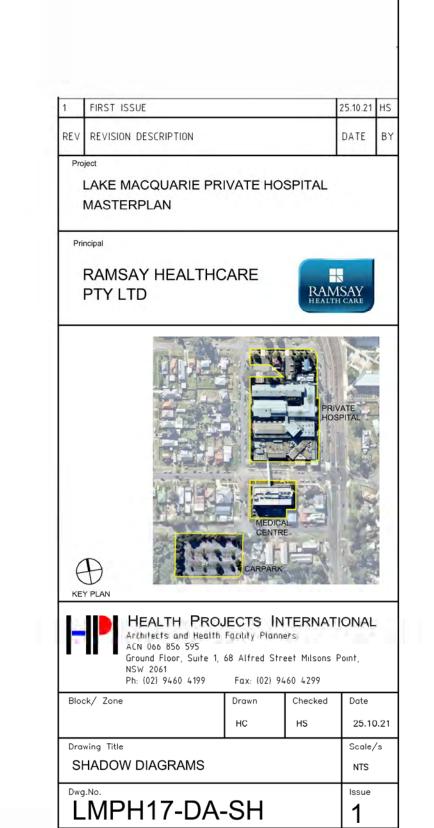

The proposal forms a visible new element and a relatively dominant feature of the overall scene in some of the vantage points. As a result, the magnitude of proposal is considered High to Moderate in the current context. However, it is anticipated that the Gateshead Precinct go through some future transformations to become one of the major health destinations in the area. As a result, the magnitude of proposal is considered Moderate in the potential future context.

In summary:


- The proposal is consistent and compatible with the future planned character of the Gateshead as a regionally significant health precinct and contributes to the evolving character of the area from a residential neighbourood to a health hub;
- The proposal is consistent with the requirements in the Lake Macquarie Scenic Management Guidelines;
- The strategic location of the site along Pacific Highway is ideal to create a gateway tower as an iconic entry to Gateshead Health Precinct;
- It is anticipated that the surrounding lands around the Private Hospital will accommodate health allied services and medium density housing to support the Precinct. Therefore, there will be less visual contrast between the proposal and the surrounding setting compared to the existing low density scenario;
- There already exists a presence of landscape detractors in all vantage points including existing structures, housing, utility poles, billboards and etc. which reduce the dominance of the proposal;

- Existing vegetation and mature trees along main streets partly screen the proposal and reduce the visual impact; and
- The proposal does not reduce the quality of the scenes by delivering design excellence.
- Use of facade treatment, articulation and colour selection reduce the bulk impact and increase the visual amenity.


Attachment 2: Shadow analysis


1. WINTER SOLSTICE 9AM

3 WINTER SOLSTICE 3PM

2 WINTER SOLSTICE 12NOON

LMPH17-DA-SH

Attachment 3: Traffic and parking assessment

Suite 502, Level 5, 282 Victoria Avenue Chatswood NSW 2067 T (02) 9411 5660 | F (02) 9904 6622 E info@ttpa.com.au | ttpa.com.au

Lake Macquarie Private Hospital **Planning Proposal**

Traffic and Parking Assessment

Ref: 21297 Date: OCT 2021

Rev:

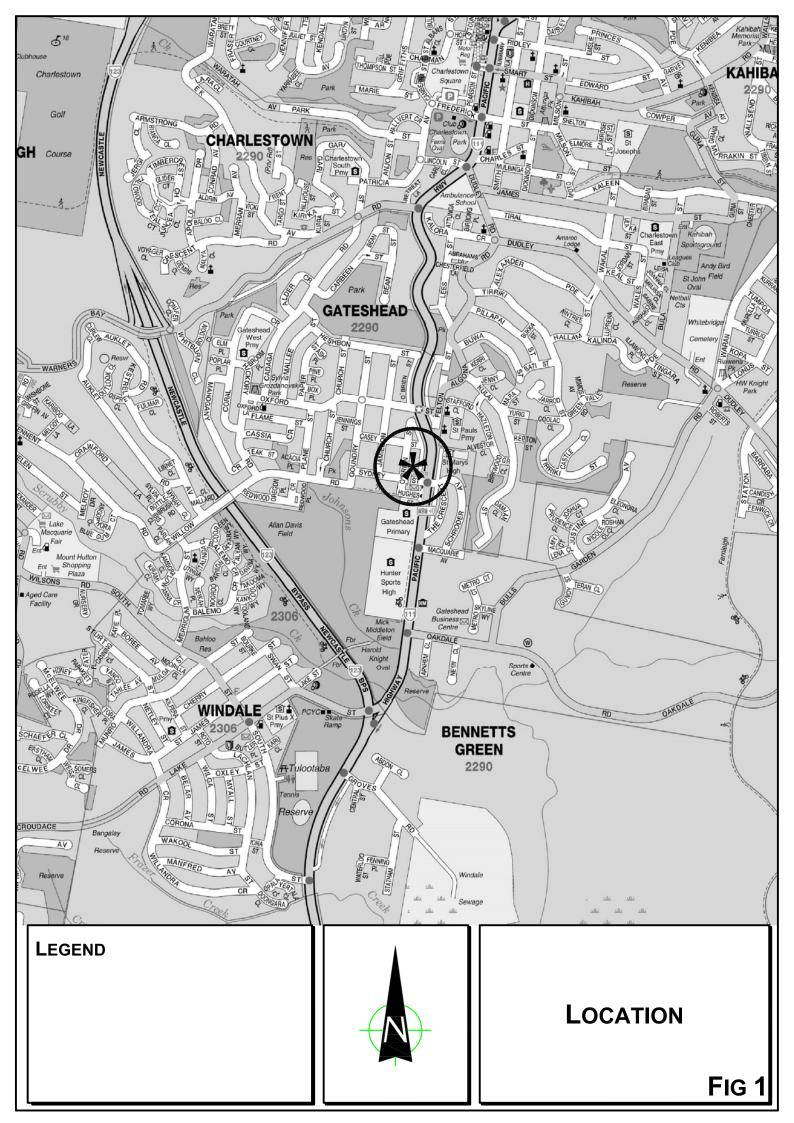
Table of Contents

1.0	INT	RODUCTION		1					
2.0	PRO	POSED DEVELOPMENT		3					
	2.1 2.2 2.3 2.4	Approved Development. Development Masterplar	` ``	es					
3.0	ROA	AD NETWORK AND TRAI	FIC CONDITI	ONS7					
	3.1 3.2 3.3 3.4 3.5	Traffic Controls Traffic Conditions Transport Services							
4.0	PARKING10								
5.0	TRA	AFFIC		13					
6.0	ACC	ACCESS, INTERNAL CIRCULATION AND SERVICING 17							
	6.1 6.2 6.3	Internal Circulation							
7.0	CON	NCLUSION		19					
List	of Fi	gures	List of Appe	ndices					
Figu Figu Figu Figu	re 2 re 3	Location Site Road Network Traffic Controls	Appendix A Appendix B Appendix C Appendix D Appendix E Appendix F	Approved Plans Concept Plans Traffic Volume Data SIDRA Results Bus Services Turning Path Assessment					

1.0 Introduction

This report has been prepared for Ramsay to provide a Traffic, Transport and Parking Assessment to accompany a Planning Proposal which forms part of a Development Masterplan for a significant upgrade of the Lake Macquarie Private Hospital that includes:

- Planning Proposal to permit the height of the proposed Ward Tower building
- staged development
- expansion of the Hughes Street car park
- alterations and additions which are subject to existing consents


Lake Macquarie Private Hospital (Figure 1) provides healthcare services for the Newcastle and Lake Macquarie areas as well as the Hunter and New England areas. The hospital is a 187 bed "Acute Medical and Surgical Facility", with Emergency Department and Cancer Centre, linked by overhead walkway to the Lake Macquarie Specialist Centre which provides radiology and pathology services and contains medical consulting suites.

The Hospital has been subject to increasing demands for its services due to the increasing number and aging of the population in the Central Coast area and there have been a number of alterations and additions undertaken over the years while there are 2 outstanding development consents which have not been implemented as yet.

The Development Masterplan involves 5 stages and the proposed Ward Tower represents Stage 3 of that process and the Planning Proposal is submitted in the context of the Masterplan.

The purpose of this report is to:

- describe the existing hospital, the outstanding Consents, the Development and the Planning Proposal Masterplan
- describe the road network serving the site and the prevailing traffic conditions on that network
- assess the adequacy and appropriateness of the proposed parking provision
- * assess the potential traffic implications of the proposed development
- assess the proposed vehicle access, internal circulation and servicing arrangements

2.0 Proposed Development

2.1 Site, Context and Existing Circumstances

The Lake Macquarie Private Hospital site (Figure 2) comprises a consolidation of lots which is located to the south of the Gateshead Centre with frontages to the Pacific Highway service road, Sydney Street, O'Brien Street and Casey Street. The elements comprise:

- the hospital complex is located on the northern side of Sydney Street
- the associated medical centre located on the southern side of Sydney Street (with an overhead pedestrian bridge link)
- the leased area for carparking on part of the school site with frontage to Hughes Street

The surrounding area comprises residential dwellings to the west of the Highway while the primary and high schools are located just to the south and there is a mixture of uses on the western side of the highway.

The existing Hospital comprises:

- Emergency Department, Theatres, Oncology Unit, ICU, Cath and Vascular labs
- 187 inpatient beds
- 239 staff (maximum daytime)
- 9 Doctors
- ❖ 33 VMO's

Staff and Doctors at the Hospital have a wide range of working hours as follows:

- Doctors (shifts) 8:00am 4:30pm, 9:30am 6:00pm and 5:00pm 11:00pm
- Ward nurses 7:00am 4:30pm, 1:30pm 10:00pm and 9:30am 7:30am
- Theatre staff 7:00am 7:30pm
- Allied Health 8:00am 5:00pm
- Ward clerks 7:00am 3:30 pm and 4:00pm Midnight.

LEGEND

SITE

FIG 2

The Emergency Department is open 24/7 while CSSD is generally open 4:00am to 2:00am.

The existing total carparking provision of 210 spaces comprises:

- ❖ 24 spaces in an open area on the north-eastern corner of the main hospital site
- 12 spaces along the southern side of the hospital
- 148 spaces on a leased area of the school to the south
- 18 spaces accessed on O'Brien Street
- 8 spaces accessed on Casey Street

There are a number of vehicle accesses provided including a porte cochere for setdown/pickup on Sydney Street.

2.2 Approved Development

Consent (DA2320/2017) has been granted for a new 18 bed ward, 16 space car park.

Consent (DA443/2018) has been granted for additional operating theatre and CSSD facilities which comprise:

- 2 new operating theatres with reception
- Patient recovery bays (9)
- Day surgery
- Ancillary facilities including:
 - X ray room
 - Offices and lifts
 - Staff amenities
 - · Waiting areas
 - Coffee cart area
 - Corridors

2.3 Development Masterplan

The Development Masterplan involves 5 stages as follows:

Stage 1 and 2

These involve the works contained in the 2 existing consents being the new 18 bed ward (DA2320/2017) and the alteration/addition for the new operating theatres, patient recovery, day surgery and ancillary facilities (DA443/2018). The additional workers will comprise:

Stage 1 Stage 2
4 additional staff 6 additional staff
6 additional doctors

The provision of a 16-space car park was included in the Stage 1 approval however, these spaces will now be incorporated into the proposed expansion of the Hughes Street car park where there will be 44 additional spaces provided on the new Level 1.

Stage 3 (Ward Tower)

The new 9 level tower building will be provided on the northern part of the site with a porte cochere on the Casey Street frontage. There will be 3 levels of car parking and 2 "cold shell" levels with a back of house lower level containing loading docks. There will be 65 new ward beds (32 existing beds deleted) with 102 staff and 20 VMO's with 120 new parking spaces will be provided in the Tower Building while 26 existing spaces will be deleted and the NE parking will be reduced from 24 spaces to 5 spaces.

Stage 4

This involves:

- Modification to the existing main entry
- New recovery lounge
- Hybrid OT Suite
- Emergency Department expansion
- Ambulance bays
- No increase to staff or doctors

Stage 5

This stage involves 3 new theatres, 49 ward beds, 665m² medical imaging and 10 consulting suites with 25 staff and 9 VMO's. The 2nd stage of the Hughes Street carpark expansion will add 103 spaces.

Details of the Masterplan scheme are provided on the plans prepared by Health Projects International which are reproduced in part in Appendix A.

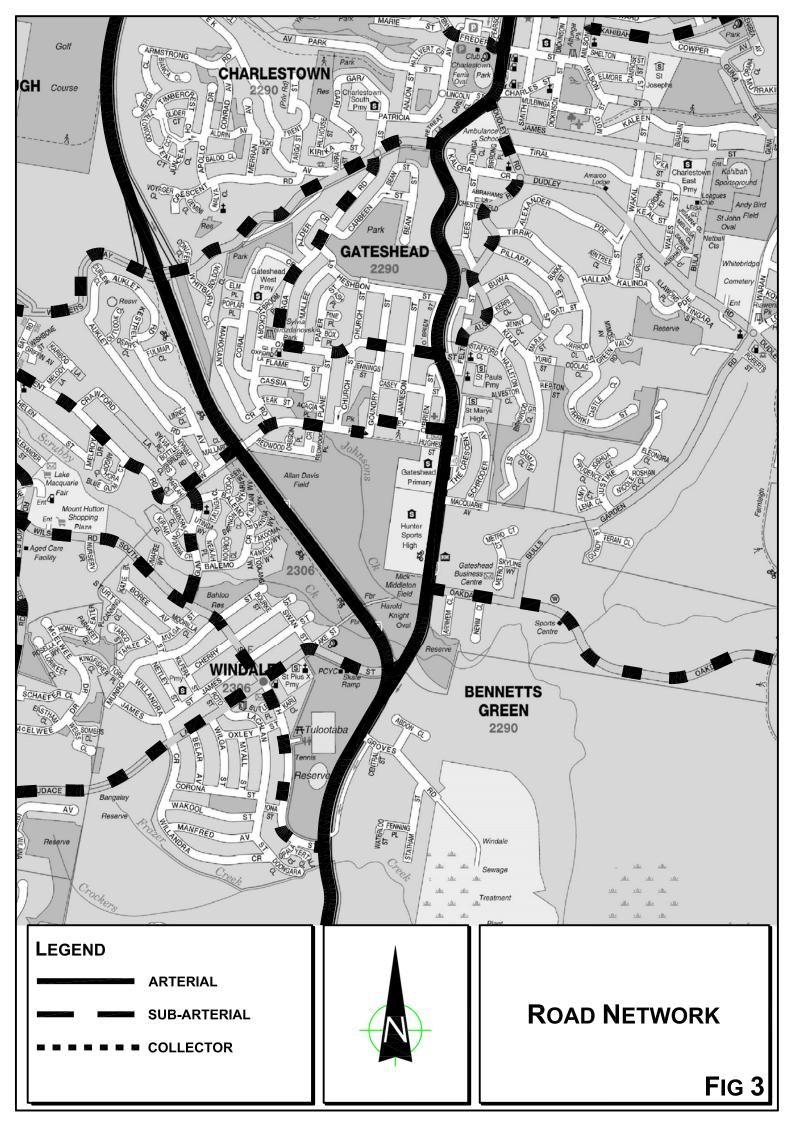
2.4 Planning Proposal

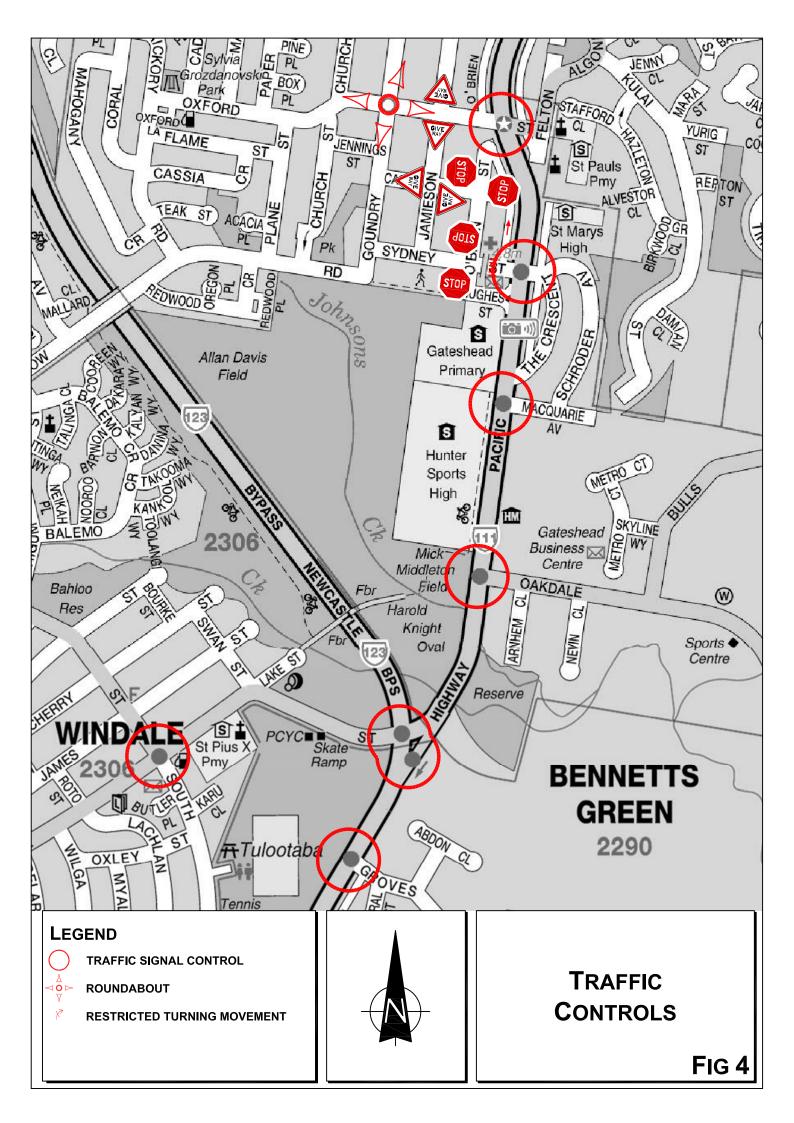
The purpose of the Planning Proposal is to amend the building height restrictions to enable construction of the proposed 9 level Ward Tower.

3.0 Road Network and Traffic Conditions

3.1 Road Network

The existing road network serving the site (Figure 3) comprises:


- Pacific Highway a State Road and arterial route which connects between Sydney and Newcastle
- Newcastle Inner City Bypass a State Road and arterial route which links between
 Windale and Kotara
- ❖ Sydney Street, Willow Road and Tennent Road a collector route connecting between the Pacific Highway and Warners Bay Road.


O'Brien Street, Hughes Street and Casey Street are local access roads which are relatively straight and level while there is a "service road" extending along the western side of the highway northwards from Sydney Road.

3.2 Traffic Controls

The traffic controls which have been applied to the road system in the vicinity of the site (Figure 4) include:

- the central median island along the highway which extends across the site frontage as well as the Hughes Street intersection
- the traffic control signals at the Pacific Highway and Sydney Street intersection
- the traffic signals at Pacific Highway and Oxford Street intersection
- the marked footcrossing on Sydney Street mid-way between the highway and O'Brien Street
- the 50 kmph speed limit on the local road system with section of 40 kmph in Sydney Street, O'brien Street and Hughes Street and adjacent to schools

- the various GIVEWAY and STOP sign controls at intersections in the area
- the pedestrian refuge island in Sydney Street on the eastern side of O'Brien Street.

3.3 Traffic Conditions

An indication of the existing traffic conditions in the vicinity of the site is provided by data published¹ by TfNSW which is expressed in terms of Annual Average Daily Traffic (AADT). The latest recorded data indicates the following:

	AADT
Pacific Highway south of Smart Street	28,940

Collated traffic data includes SCATS data provided by TfNSW for the Pacific Highway and Sydney Street intersection (during the COVID pause in Feb 2020) traffic surveys undertaken in late October 2021 and earlier survey data for the morning and afternoon peak periods. This data has been combined with the highest movement recordings rounded off and is summarised in the following:

		AM	PM
Pacific Highway	Northbound	1,320	880
	Right-turn	50	50
	Left-turn	80	120
	Southbound	610	1,410
	Right-turn	90	60
	Left-turn	28	30
Sydney Street	Eastbound	10	20
	Right-turn	120	130
	Left-turn	54	61
The Crescent	Westbound	10	10
	Right-turn	20	10
	Left-turn	15	15

Traffic Volume Data for Northern Region Roads and Maritime Services

A SIDRA analysis of the existing operational performance of the intersection has been undertaken and the results indicating a satisfactory performance are provided in Appendix D and summarised in the following:

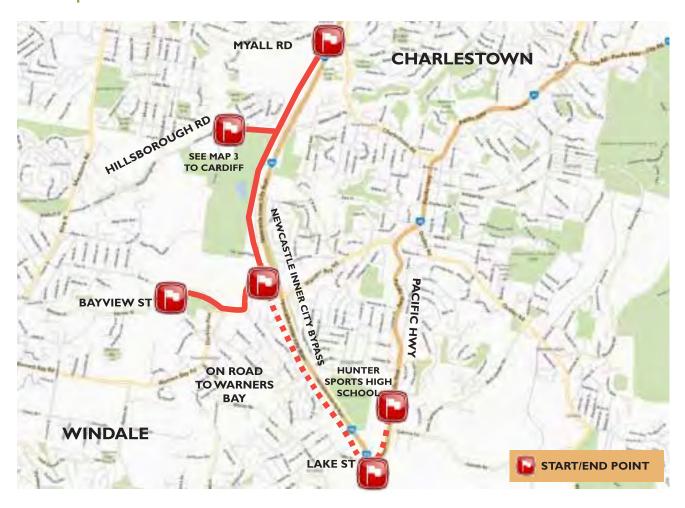
	AM	PM
LOS	С	39.3
AVD	D	43.0

Observations also confirm that the operation of this intersection is quite satisfactory even in the peak periods with no extensive or residual queuing apparent. Traffic conditions in the area are generally quite satisfactory with the traffic signal controlled intersections and central median island along the highway route.

3.4 Transport Services

Public transport services for the Hospital are provided by the Bus Route 14 which provides frequent 7 days per week services along the Highway between Newcastle and Belmont and Route 41 which operates as a regular service along Oxford Street (and the Highway). There is also an "on-demand" 7 days per week service provided for the Lake Macquarie area.

Details of these services are provided in Appendix E, indicating the location of the Route 14 bus stops adjacent to the Hospital and the times tables.


3.5 Bicycles and Pedestrians

Pedestrian facilities at the site include:

- over bridge connection to the Medical Centre
- marked footcrossing across Sydney Street
- foot paths along the highway, Sydney Street and Casey Street
- traffic signal controlled crossings at the Pacific Highway/Sydney Street intersection

Provision for cyclists is made by the shared path along the highway providing connection to the Newcastle Cycle Network (see details overleaf).

Map 5. Charlestown to Windale

This shared pathway is an ideal link between schools and the residential community, with a safe bridge crossing over the busy Newcastle Inner City Bypass. It is also a handy access way towards Warners Bay.

Location: Warners bay Road to Hunter Sports High,

Pacific Highway, Gateshead (or reverse)

Type: Linear

Distance: 2.5km

Grade: Easy to moderate

Facilities: Sportsground, club, shops

Access: Park Avenue near the Nereida

Close intersection

Information: Extensions of this track will access

Mount Hutton and Warners Bay

shopping areas

MAP 2: PRINCIPAL BICYCLE NETWORK

To Richmond Vale

To Central Coast

4.0 Parking

Lake Macquarie City Council's DCP specifies the following parking requirements in relation to the elements of the Masterplan development:

Hospital	Day Surgery	Health Consulting Rooms
1 space per 2 beds	1 space per practitioner	1 space per on-duty practitioner
plus 1 space per 2 staff	1 space per 2 staff	1 space per 2 full-time staff
plus Ambulance space	1 space per 2 operating theatres	2 spaces per consulting room

The existing hospital therefore has a parking requirement as follows:

TOTAL:	244.5 spaces (246)
33 VMO's *	16.5 spaces
9 doctors	9 spaces
251 staff	125.5 spaces
187 beds	93.5 spaces

^{*} VMO's (Visiting Medical Officers) are only on-site part time and generally about 50% at one time.

The existing parking provision comprises:

- 24 spaces in NE carpark
- 12 spaces along south side
- 148 spaces in the Hughes Street carpark
- 8 spaces accessed on Casey Street
- 18 spaces accessed on O'Brien Street

Total 210 spaces (36 space shortfall)

The proposed progressive provision of parking relative to the development stages is as follows:

Stages 1 & 2	Required
--------------	----------

18 beds - 9 spaces
4 staff - 2 spaces
6 Staff - 3 spaces
6 Doctors - 6 spaces

Total 20 spaces

Total Required 266 spaces (246 + 20)

Existing 210 spaces

Added 44 spaces (Hughes Street)

Total 254 spaces (Shortfall 12 spaces)

Stages 3 & 4

102 Staff51 spaces20 VMO's10 spaces33 Beds16.5 spaces

Total 76.5 spaces (77)

Total Required: 343 spaces

Lose 19 spaces (NE)

Lose 26 spaces (Casey Street/O'Brien Street)

Added 120 Spaces (Casey Street)

Total 329 spaces (Shortfall 14 spaces)

Stage 5

49 Beds24.5 spaces25 Staff12.5 spaces9 VMO's4.5 spaces3 Theatres1.5 spaces

Total 43 spaces

Total Required: 386 spaces

Added 103 spaces (Hughes Street)

Total 432 spaces (Excess 46 spaces)

Consulting Suites

The proposed Medical Suites will not generally be occupied on a full-time basis as many of the practitioners will have rooms at one or more other locations. Say the concurrent occupancy is 70%, with 1 practitioner in each and 1 staff:

10 Practitioners10 spaces5 spacesPatients20 spaces

Sub-Total: 35 spaces x 70%

Total: 25 spaces

Total Required: 411 spaces (excess 21 spaces)

It is apparent that the proposed total parking provision will be quite adequate for the proposed development under the Masterplan and that the existing shortfall will be eliminated with the Stage 2 works.

5.0 Traffic

The RTA Guide to Traffic Generating Development provides traffic generation criteria in relation to Private Hospitals however, a review of the sites surveyed for that 1994 study revealed that they had very little in common with LMPH.

In 2013, RMS commissioned a consultant study² to update the Guidelines in relation to the parking and traffic generation characteristics of Major Hospitals. This study involved the surveys of sites which were split into 2 categories "Metropolitan Area Hospitals" with a high level of public transport accessibility and "Metropolitan and Regional Hospitals" with low public transport accessibility (e.g. including Sydney Adventist, John Hunter, Lismore and Blacktown hospitals).

For the latter, the traffic generation in the AM and PM peak periods:

- vtph per staff
- vtph per bed

The following peak traffic generation models were recommended for the hospitals which reflect the LMPH characteristics:

Accordingly, the assessed peak traffic generation of the existing LMPH is as follows:

$$AM - 0.41 \times 239 + 0.62 \times 187 = 236 \text{ vtph}$$

 $PM - 0.59 \times 239 + 0.05 \times 187 = 182 \text{ vtph}$

² Traffic Generation & Parking Analysis For Major Hospitals URAP for RMS, Sept 2013

On this same basis, the assessed peak traffic generation for the Stage 3 and Stage 5 completed Masterplan development circumstances are as follows:

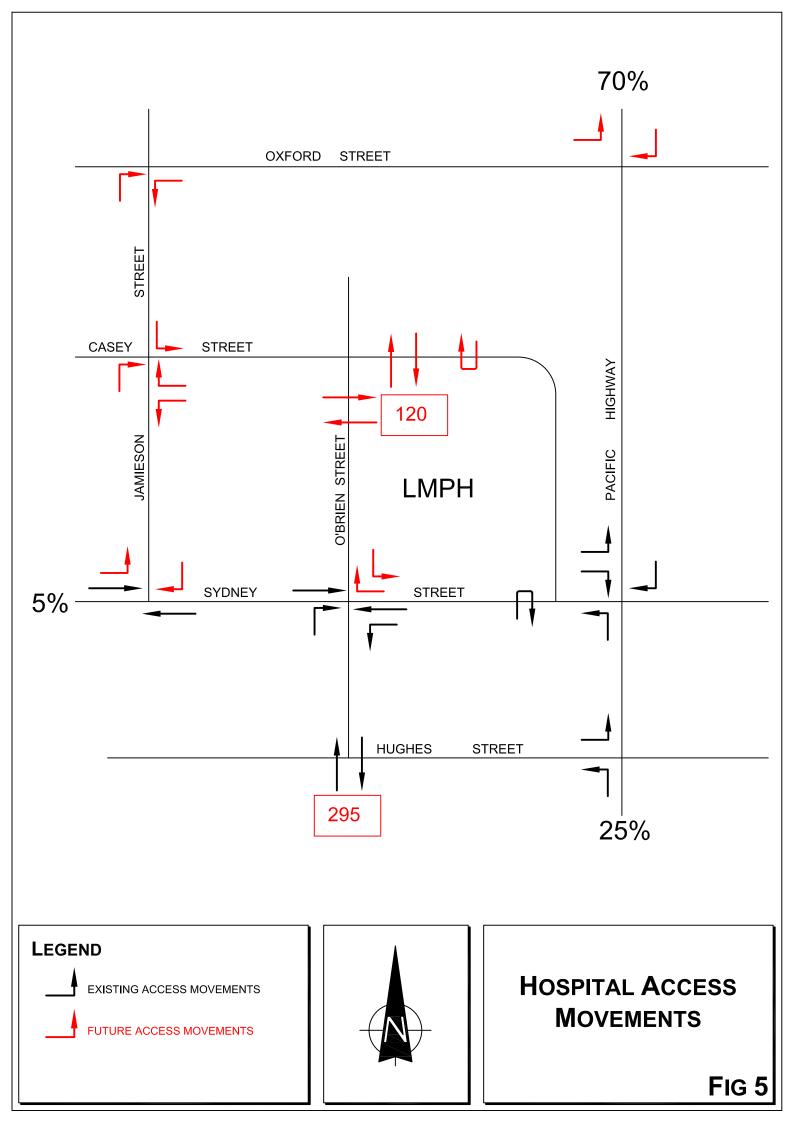
Stage 3

$$AM - 0.41 \times 415 + 0.62 \times 238 = 318 \text{ vtph}$$

$$PM - 0.59 \times 415 + 0.05 \times 238 = 257 \text{ vtph}$$

Stage 5

$$AM - 0.41 \times 449 + 0.62 \times 287 = 362 \text{ vtph (+126)}$$


$$PM - 0.59 \times 449 + 0.05 \times 287 = 280 \text{ vtph (+98)}$$

The approach and departure vehicle movements for the hospital will become more diverse as the development stages progress principally as a result of the advent of the Casey Street car park and porte cochere. This will result in vehicles approaching and departing the Highway via Oxford Street as indicated on Figure 5.

The additional movements via Oxford Street will however be relatively minor being largely comprised of vehicle movements to/from the north related to the new Casey Street car park (120 cars) and the adjacent porte cochere which will be secondary to the main Sydney Street porte cochere (and the generated movements will be no more than that of the existing porte cochere).

Surveys of the existing Hughes Street car park and Sydney Street porte cochere (see Appendix C) reveal the following peak traffic movements (vtph):

	AM		P	M
	IN	OUT	IN	OUT
Car park (148 spaces)	56	1	1	52
Porte Cochere	11	11	8	7

This indicates that some 36% of parking spaces result in vt's during the 1 hour AM and PM peak periods. The enlarged carpark will have 295 spaces and the following traffic generation is indicated:

	AM		PM	
	IN	OUT	IN	OUT
Hughes Street 295 spaces	112	6	6	104
Casey Street 120 spaces	40	3	3	40

Some 70% of generated vehicle movements will be to/from the north along the Highway with some 25% to/from the south and 5% to/from the west. Cars from the north will approach the Hughes Street car park by turning right from the highway into Sydney Street and depart by turning left from Hughes Street to the highway.

Cars from the south will approach the Hughes Street car park by turning left from the highway into Hughes Street and depart by turning right from Sydney Street to the Highway.

Cars from the north approaching the Casey Street car park will turn right from the highway into Oxford Street and depart by turning left from Oxford Street to the highway. Cars from the south approaching the Casey Street car park will turn left from the highway into Sydney Street (or Hughes Street) and depart by right turn from Sydney Street to the highway.

Movements associated with the 2 porte cocheres will be quite minor at some 20 to 30 vtph in the AM and PM peak periods. Thus, the principal additional peak traffic movements resultant to the proposed expansion of LMPH will be at the Pacific Highway and Sydney Street intersection while the highest movement increase at the Pacific Highway and Oxford Street intersection will only be some 30 vtph (i.e. right turn into Oxford Street in the AM peak and left turn to the highway in the PM peak).

The projected future peak traffic movements at the Pacific Highway and Sydney Street intersection are as follows:

		AM	PM
Pacific Highway	Northbound	1,320	880
	Right-turn	50	50
	Left-turn	120	130
	Southbound	610	1,410
	Right-turn	130	80
	Left-turn	28	30
Sydney Street	Eastbound	10	20
	Right-turn	130	154
	Left-turn	65	80
The Crescent	Westbound	10	10
	Right-turn	20	10
	Left-turn	15	15

The operational performance of this intersection with the projected additional traffic volumes has been modelled with SIDRA and the results are provided in Appendix D and summarised in the following:

AM		P	М
LOS	AVD	LOS	AVD
С	41.8	D	44.5

These results indicate that this intersection will continue to operate satisfactorily during the peak traffic periods.

6.0 Access, Internal Circulation and Servicing

6.1 Access

The proposed new and changed vehicle access arrangements are as follows:

- Sydney Street Porte Cochere

The existing egress to Sydney Street is deleted and egress is to the highway service road.

Casey Street Porte Cochere

Sperate ingress and egress driveways are provided just to the west of the highway service road where good sight distances are available.

Casey Street Car Park

Combined ingress/egress driveways are provided on Casey Street and O'Brien Street where good sight distances are available.

- Ambulance Facility

A wide driveway is provided on the highway service road to enable 3 ambulances to access independently. Good sight distances are available at this location.

Loading dock

A wide access driveway is provided on the highway service road just to the south of Casey Street to enable 2 trucks to independently access the loading dock.

Good sight distances are available at this location.

Hughes Street Car Park

A new combined ingress/egress driveway will be provided on the School access roadway just to the north of the existing access driveway where good sight distances are available.

6.2 Internal Circulation

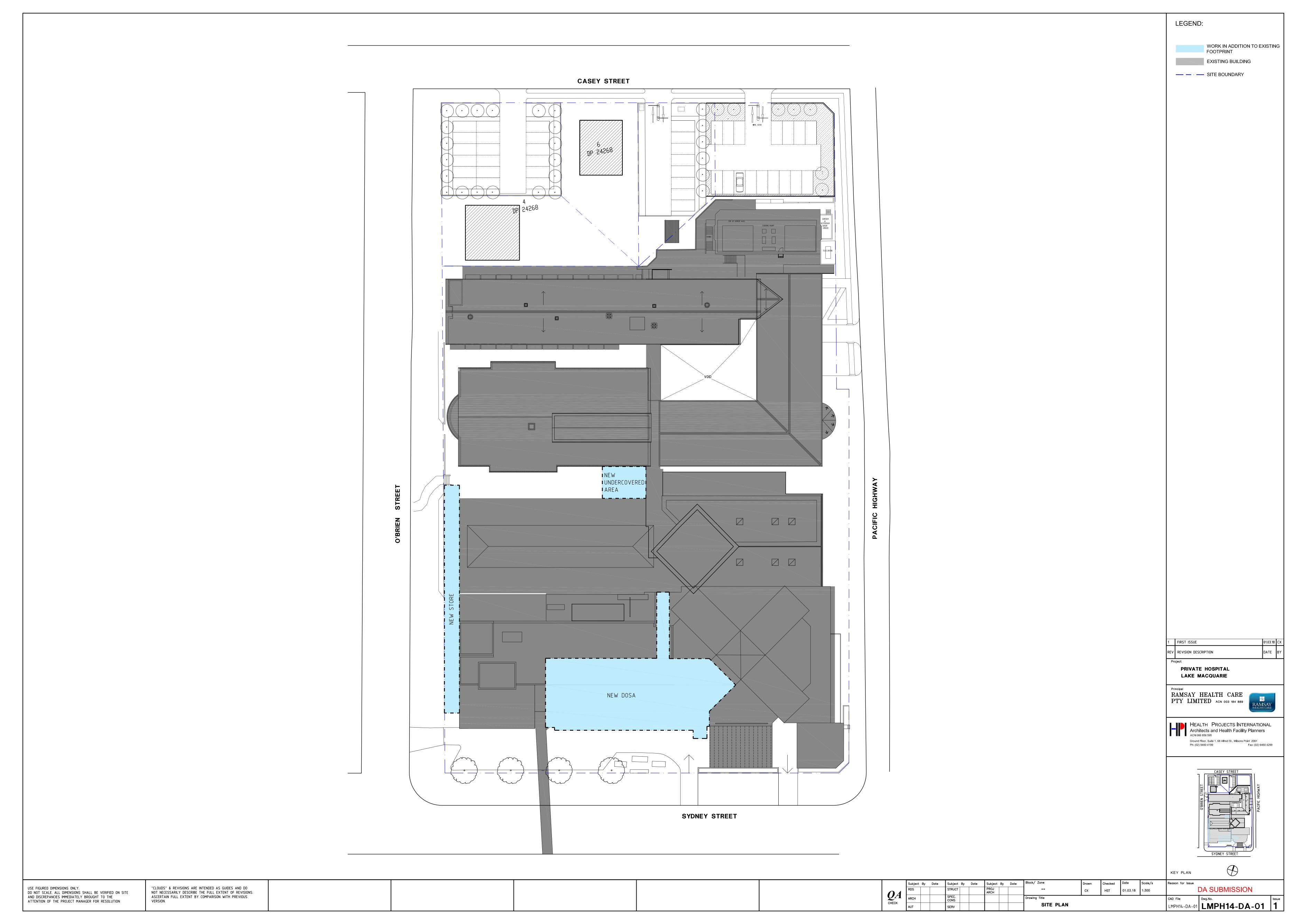
The design of the internal circulation arrangements for the various car park areas complies with the requirements of AS 2890.1 & 6 including ramps, grades, bays, aisles, turning/manoeuvring and head room etc.

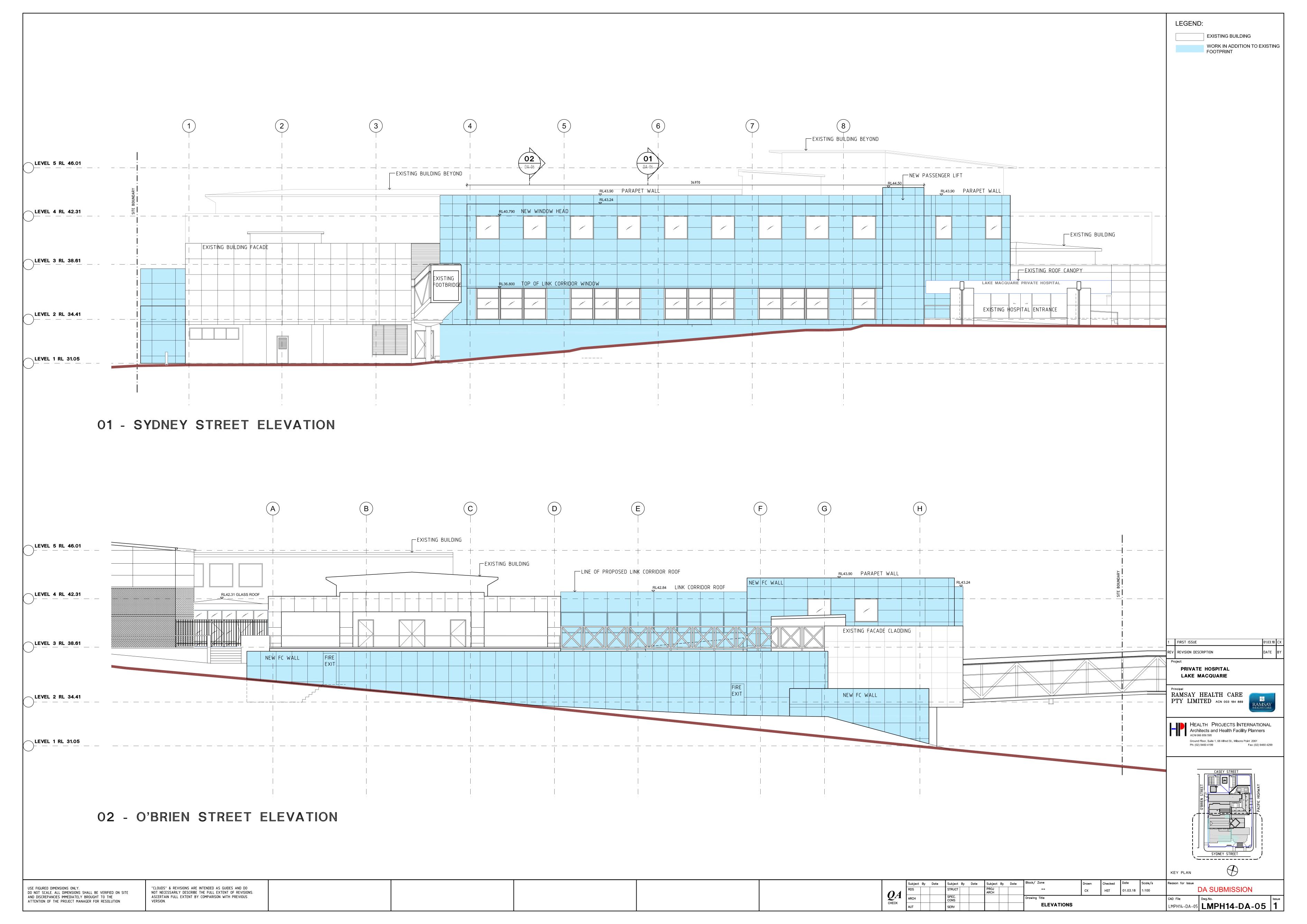
6.3 Servicing

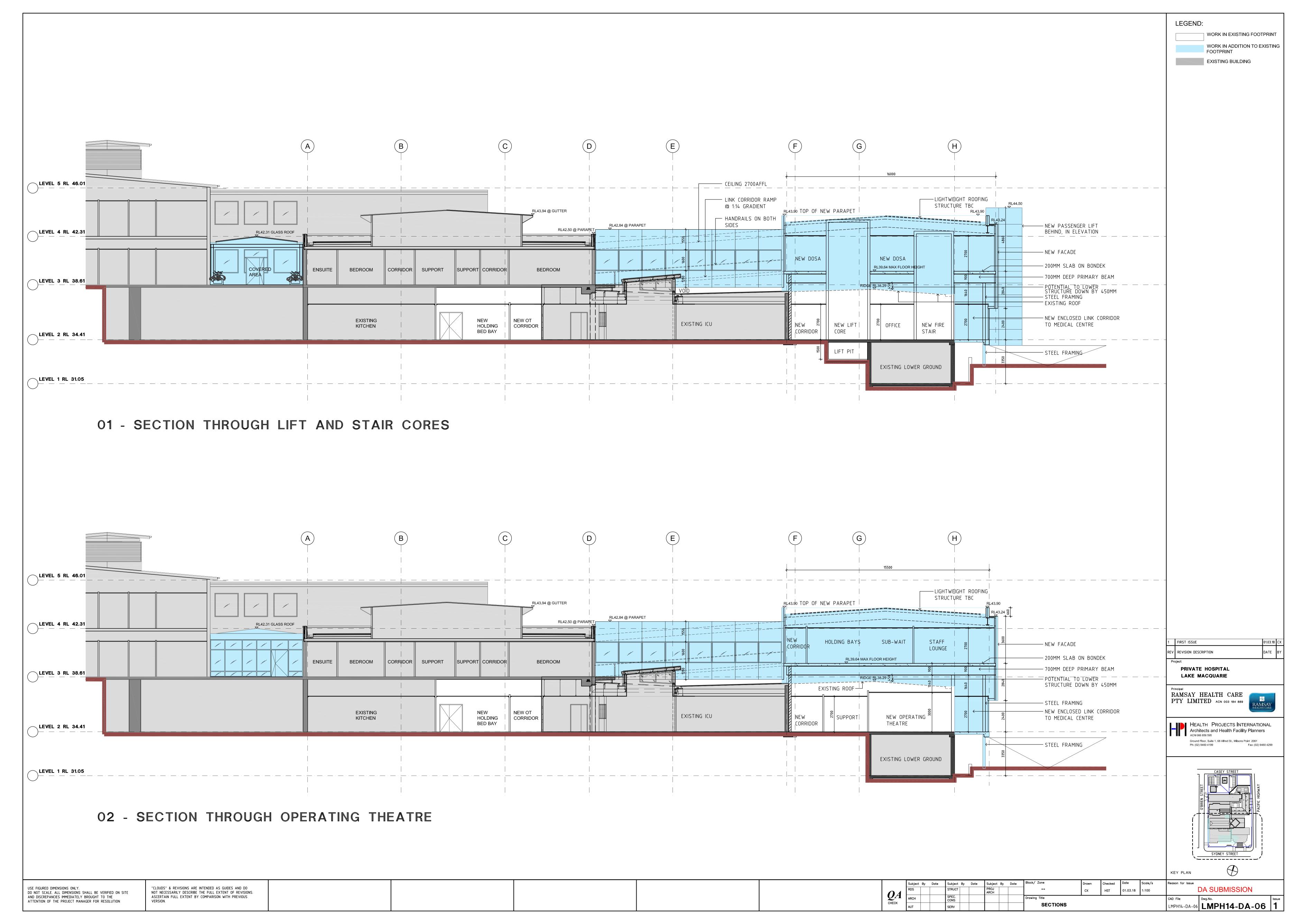
Apart from the ambulance facility, delivery and service vehicles will utilise the 2 bay loading dock on the highway service road frontage although small vehicles (e.g. pathology pick up and urgent blood delivery) will be able to use the available short term parking spaces.

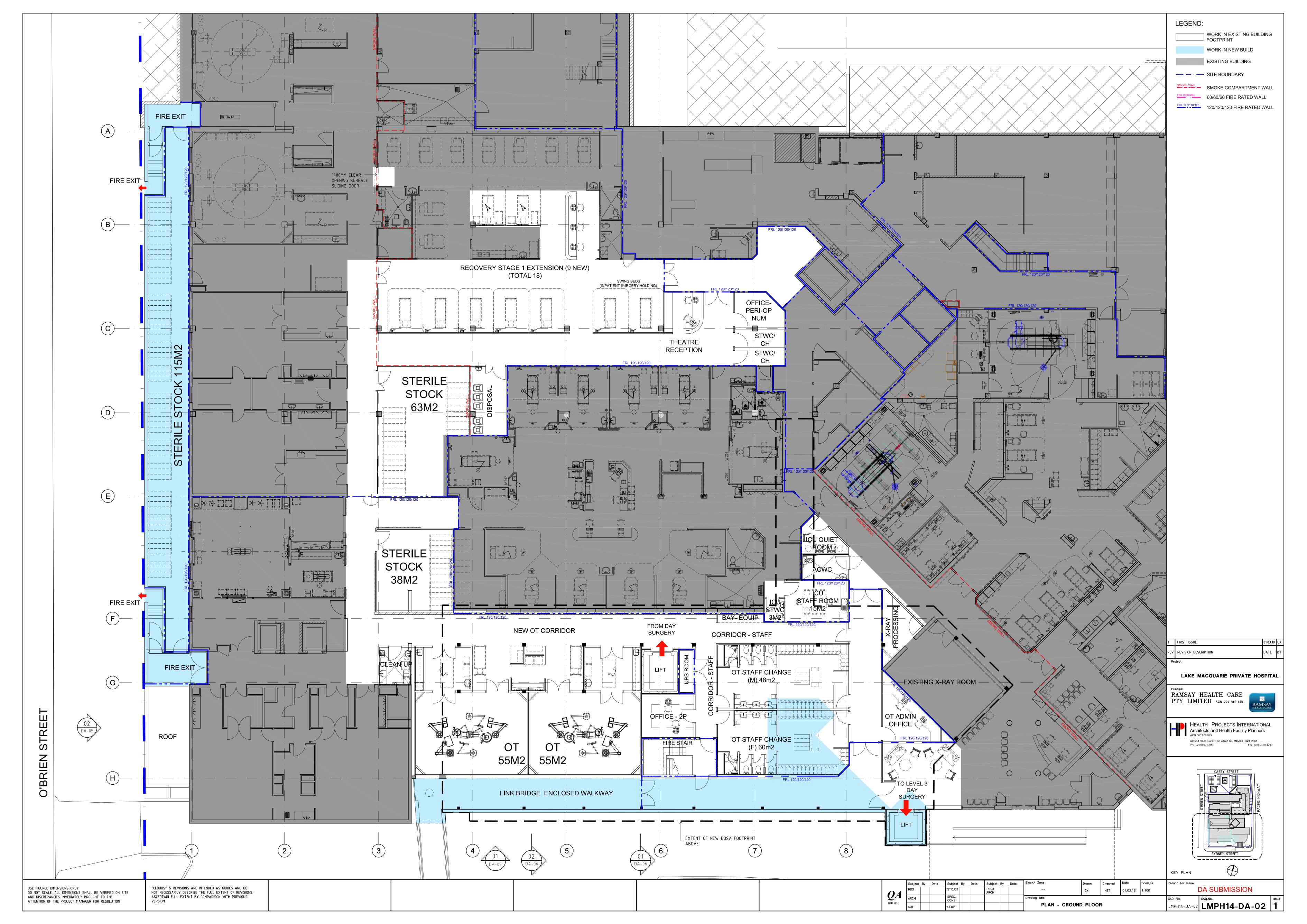
The loading dock will accommodate trucks up to 14.5m semi-trailer and details of the turning path assessment for these trucks are provided in Appendix F.

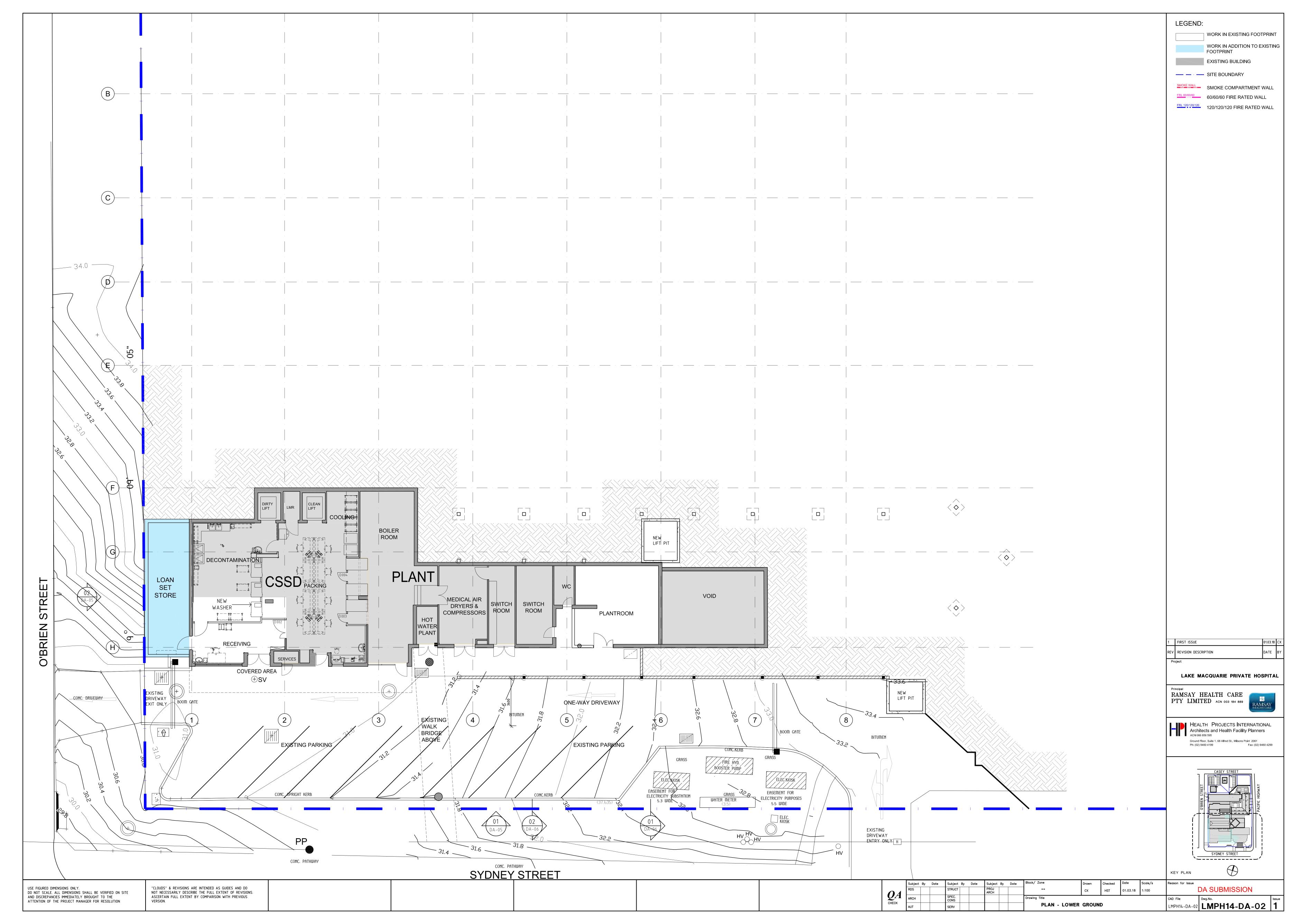
7.0 Conclusion

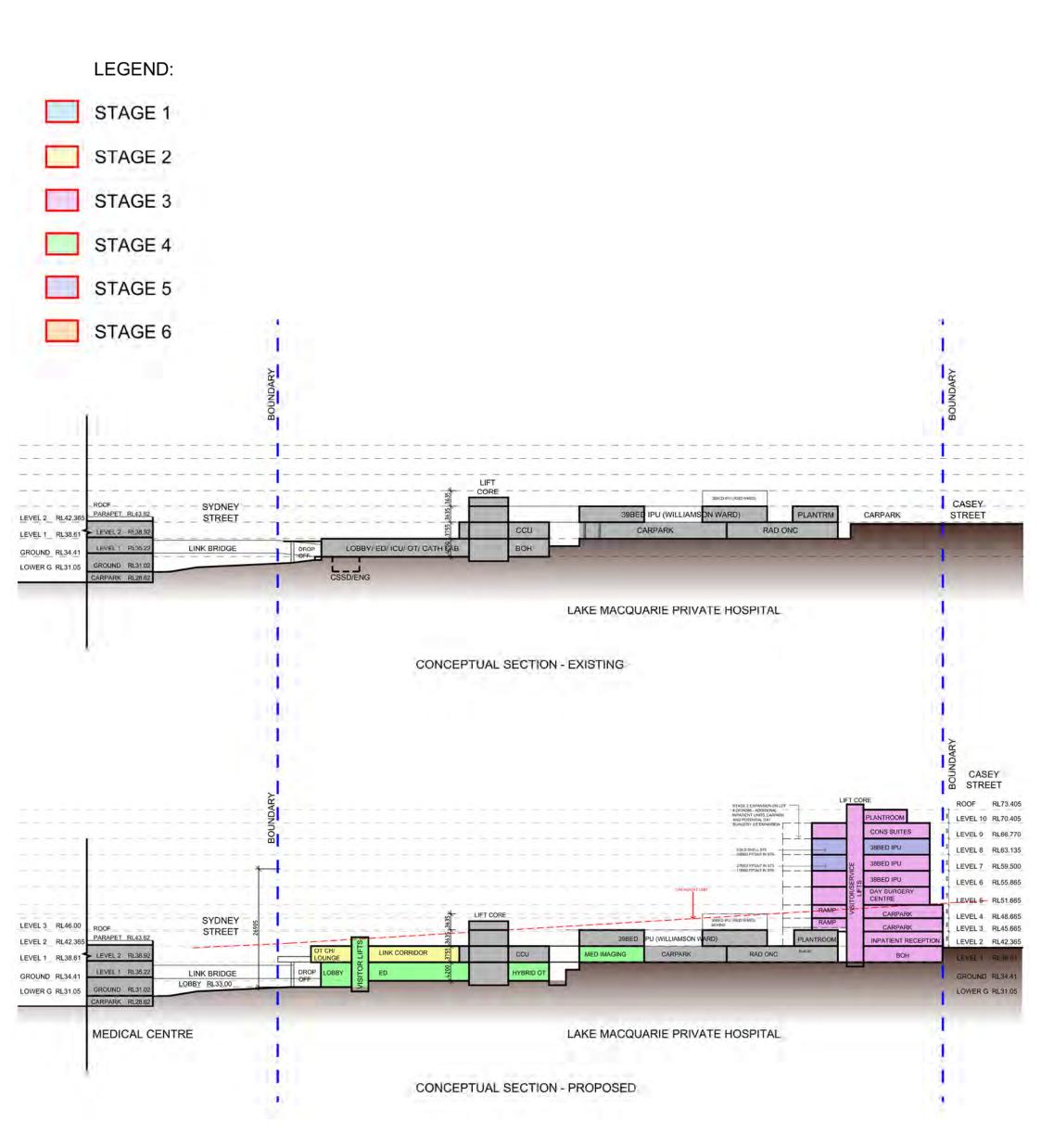

The proposed Development Masterplan for Lake Macquarie Private Hospital includes a Planning Proposal to permit the height of the proposed Ward Tower. This assessment has concluded that the proposed development:


- will not result in any adverse traffic implications
- will provide adequate and appropriate car parking
- * will make suitable provision for vehicle access, internal circulation and servicing.

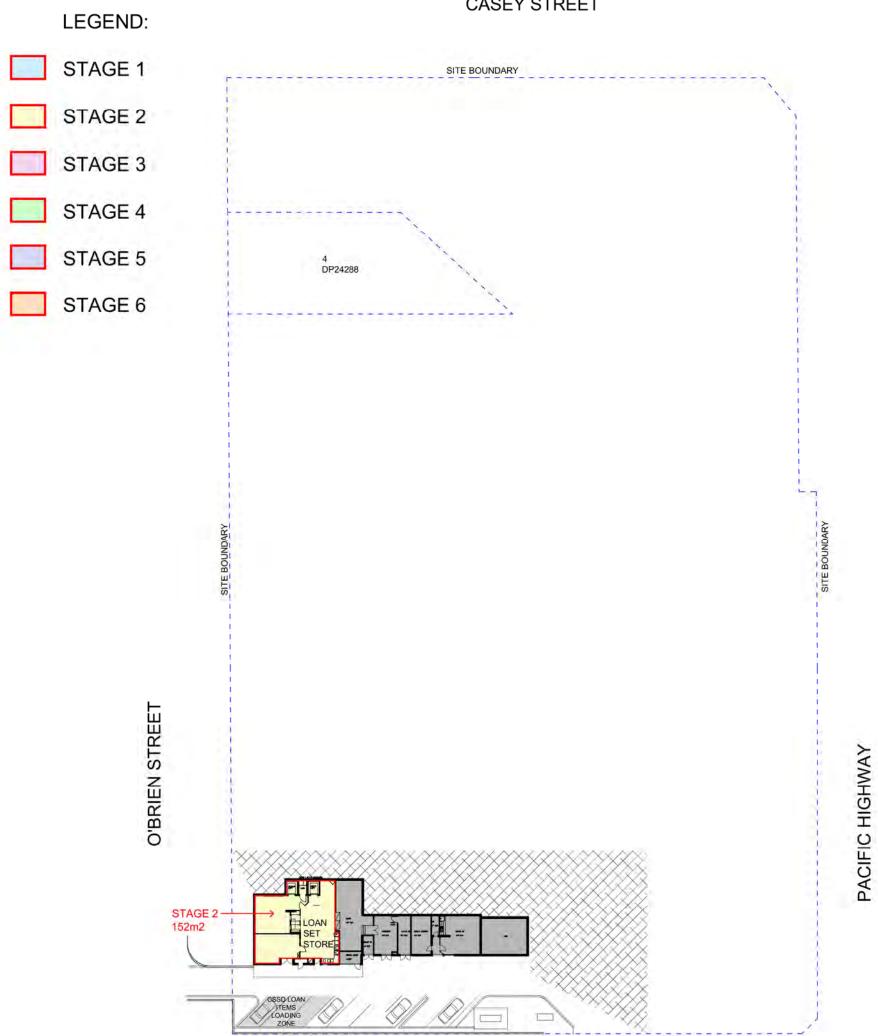

Appendix A

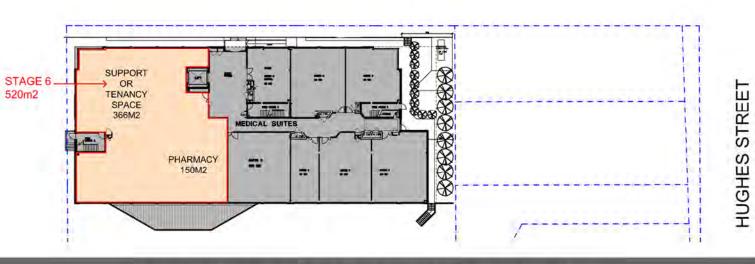

Approved Plans



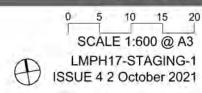


Appendix B

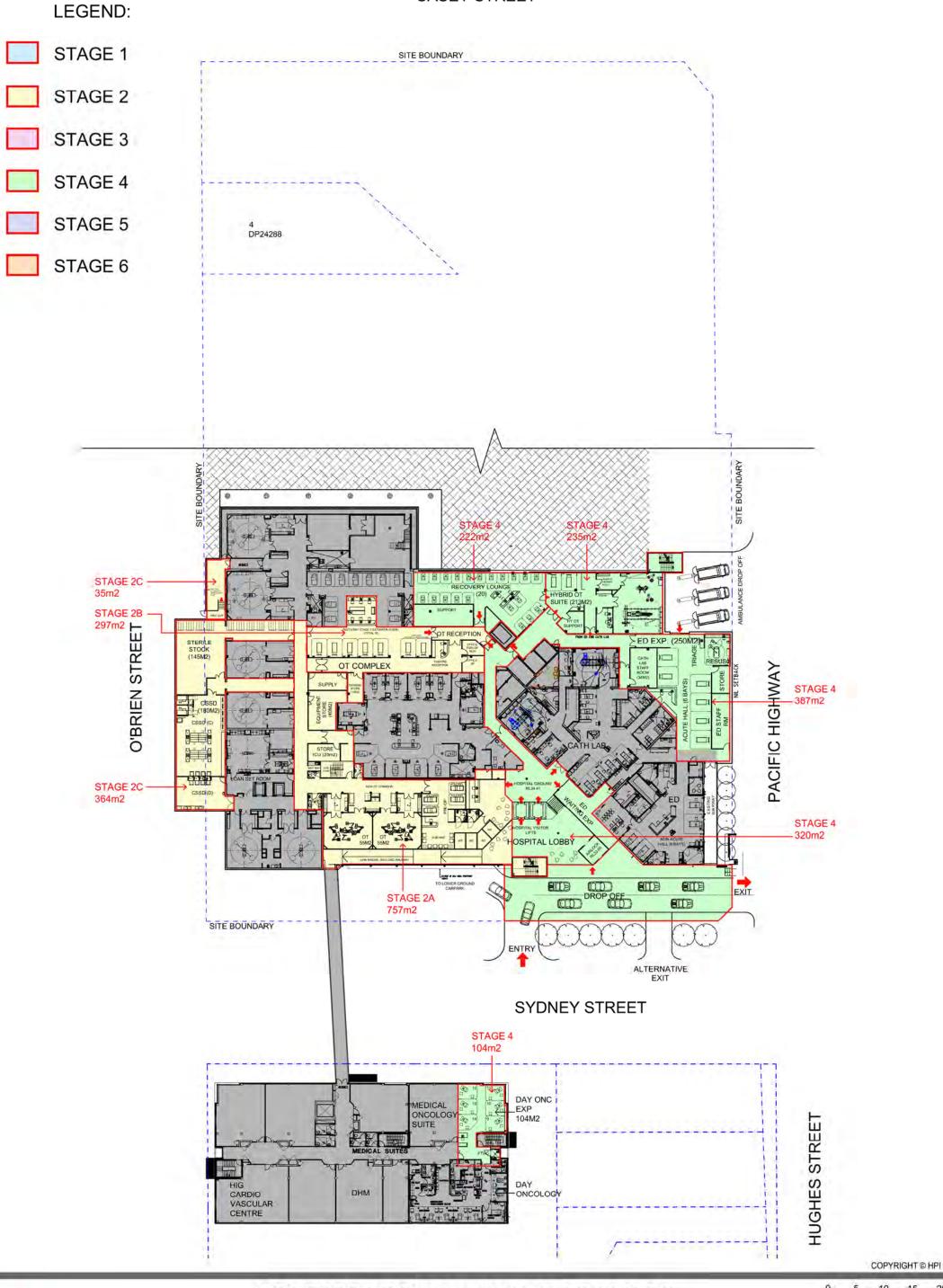

Concept Plans

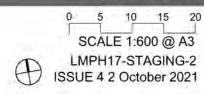


COPYRIGHT @ HPI


CASEY STREET

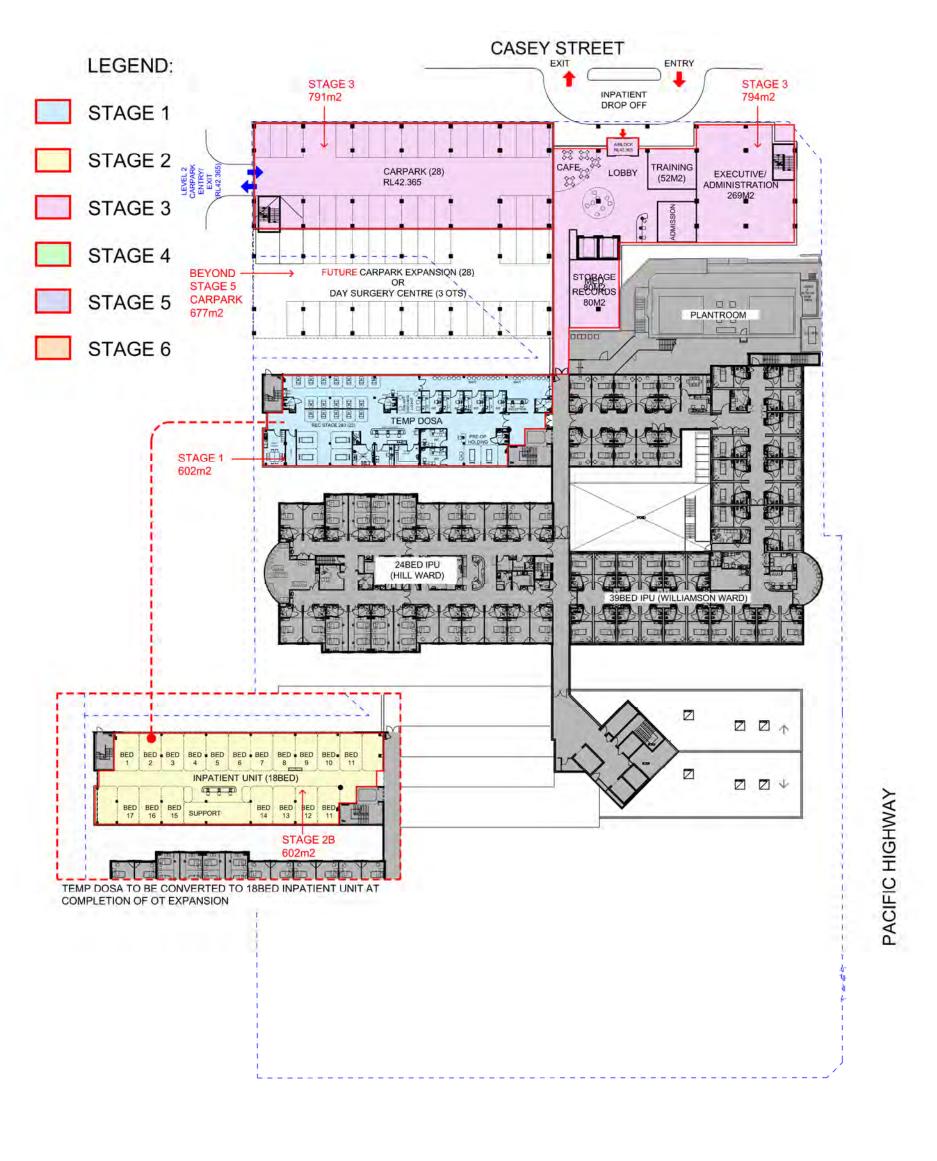
SYDNEY STREET

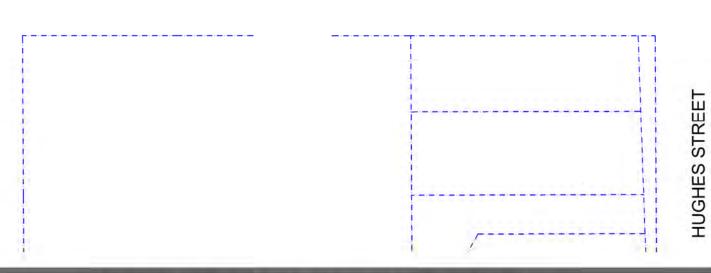


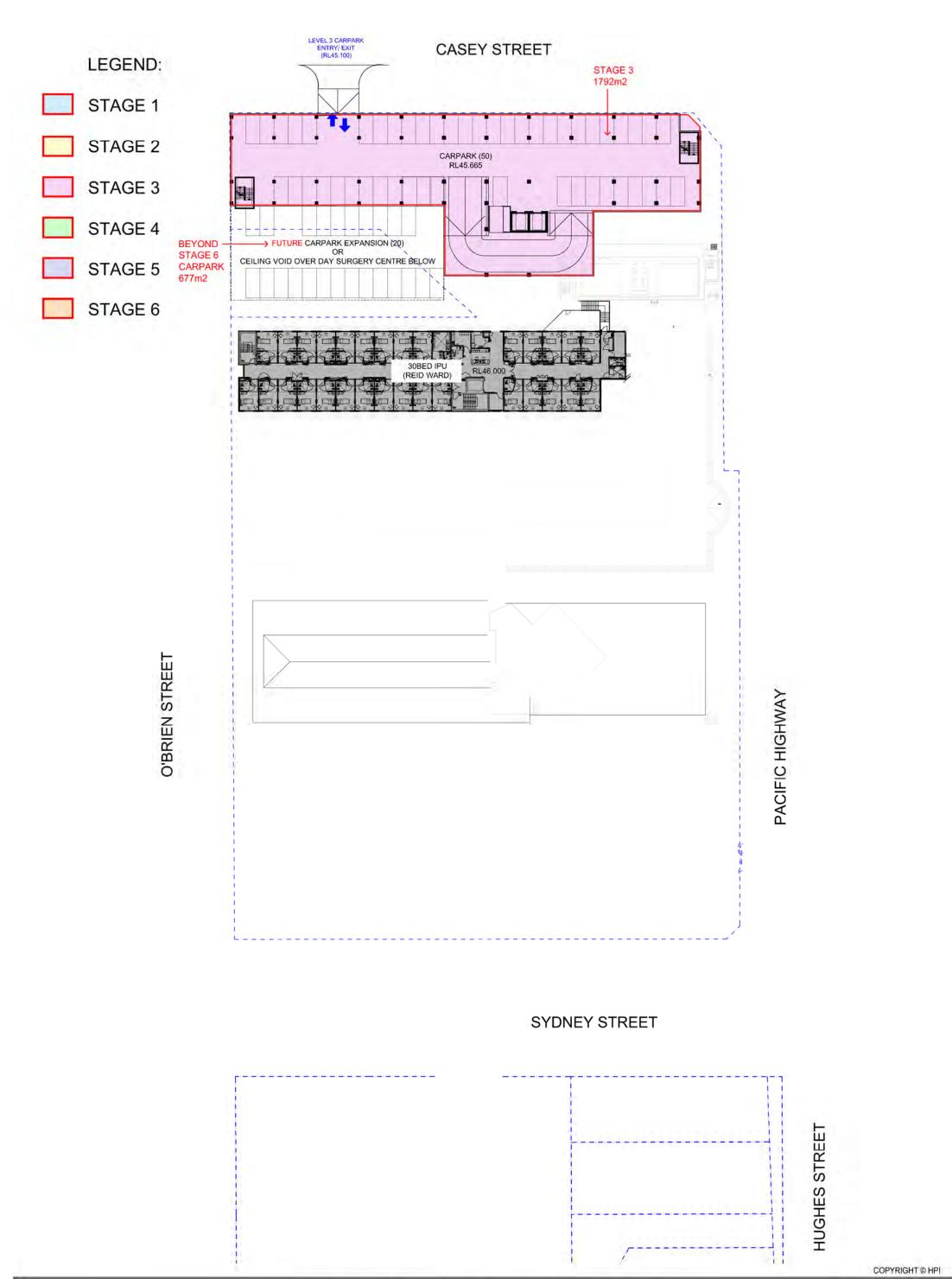


COPYRIGHT @ HPI

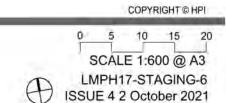
CASEY STREET



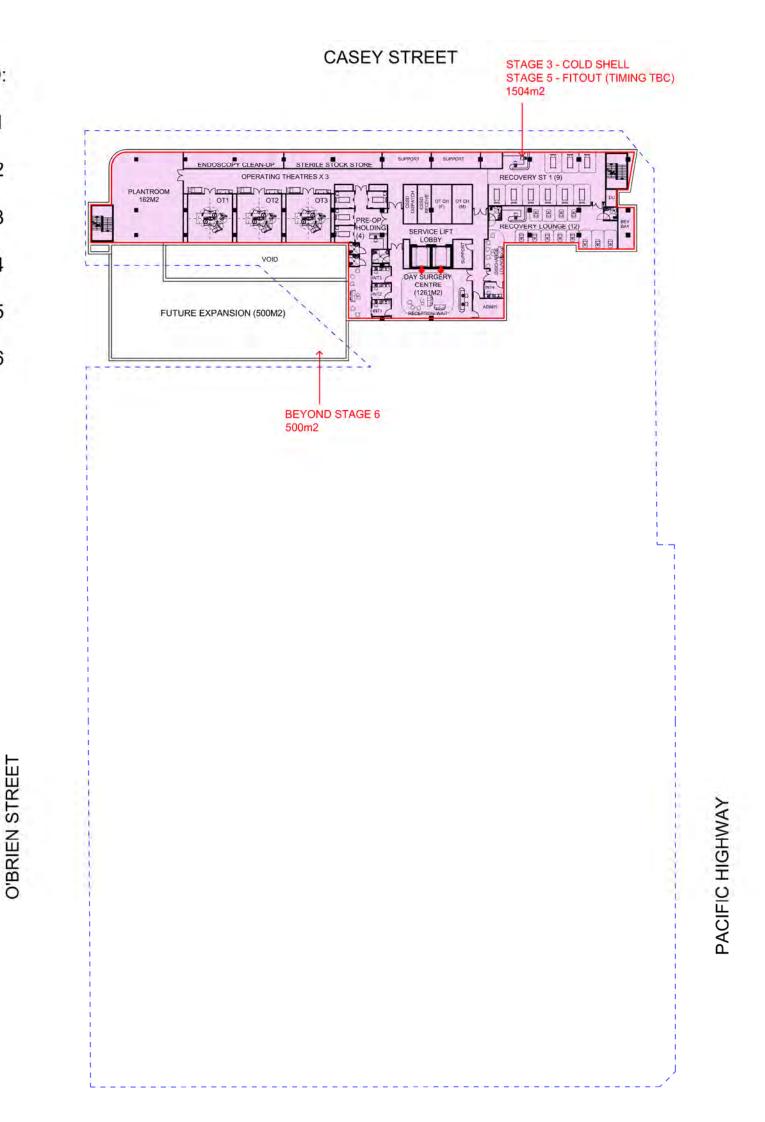





COPYRIGHT @ HPI



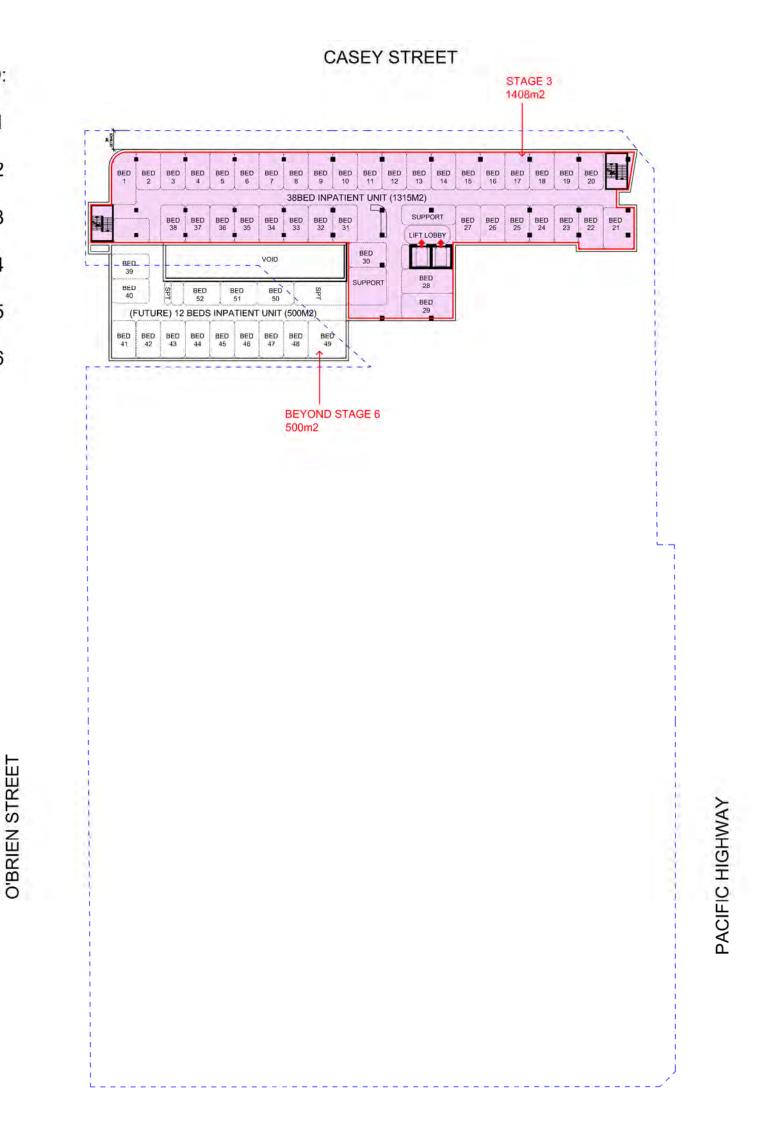
COPYRIGHT @ HPI



HUGHES STREET

LEGEND:

STAGE 1


STAGE 2

STAGE 3

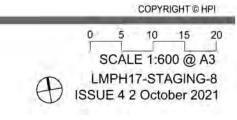
STAGE 4

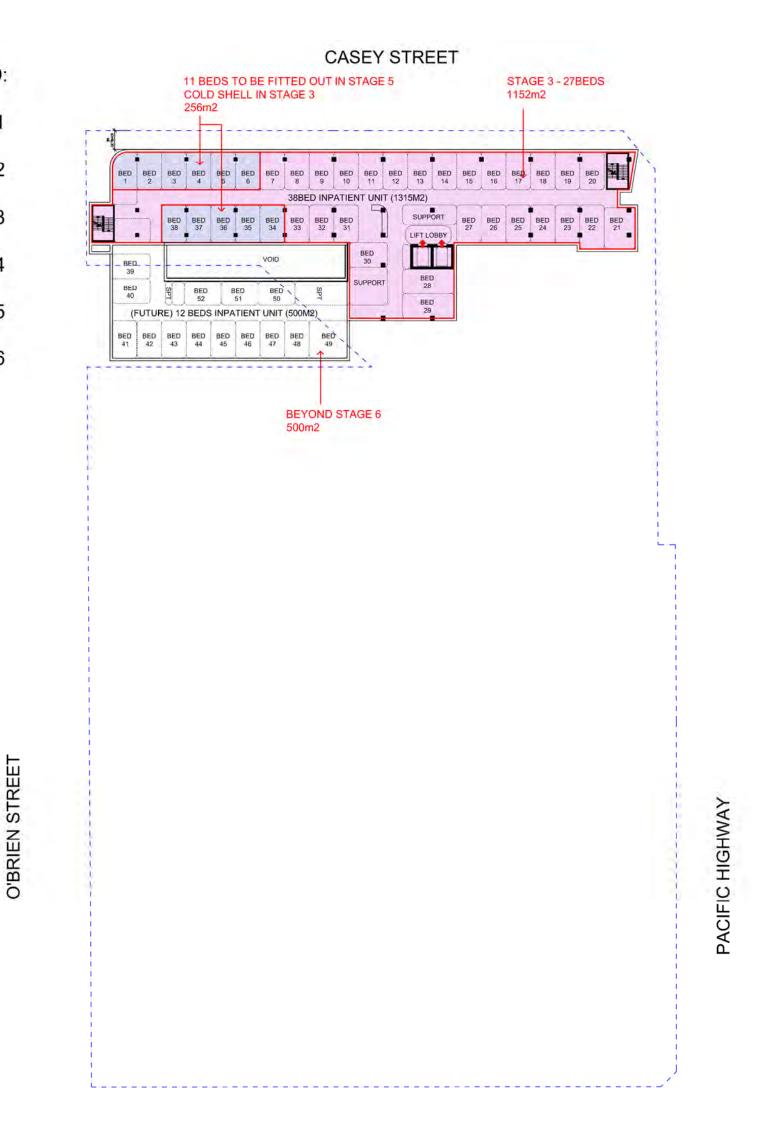
STAGE 5

STAGE 6

LEGEND:

STAGE 1


STAGE 2


STAGE 3

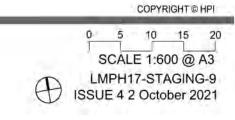
STAGE 4

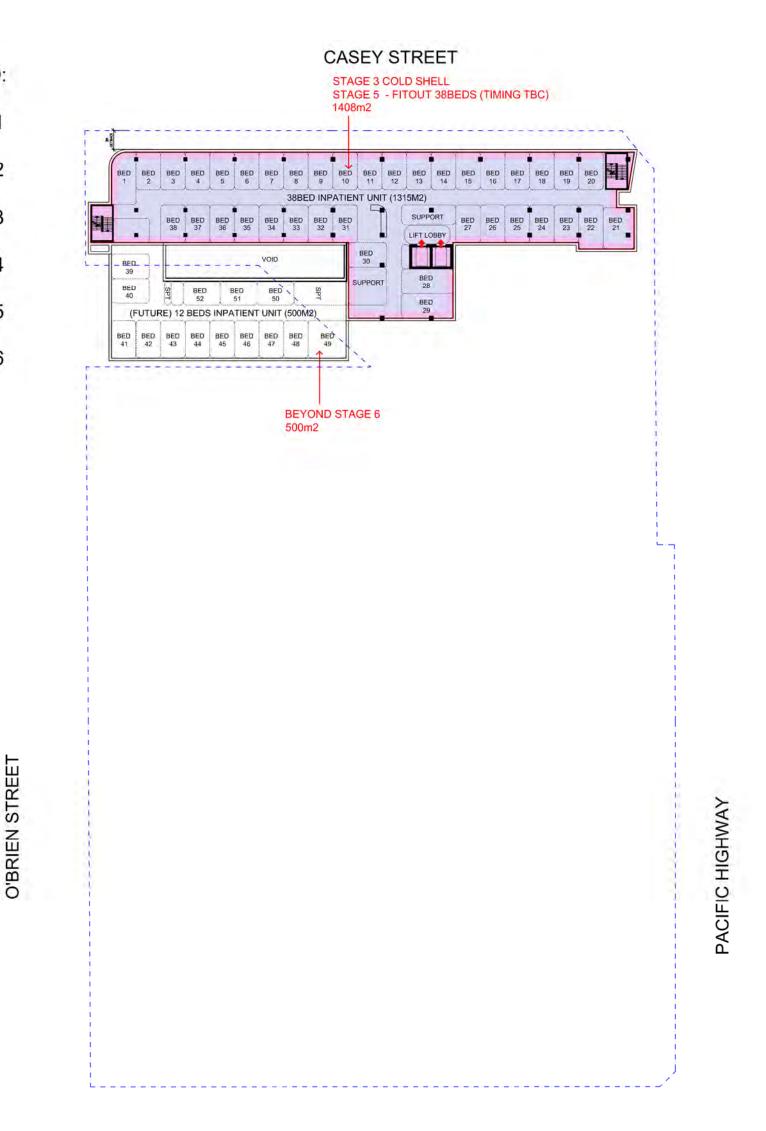
STAGE 5

STAGE 6

LEGEND:

STAGE 1


STAGE 2


STAGE 3

STAGE 4

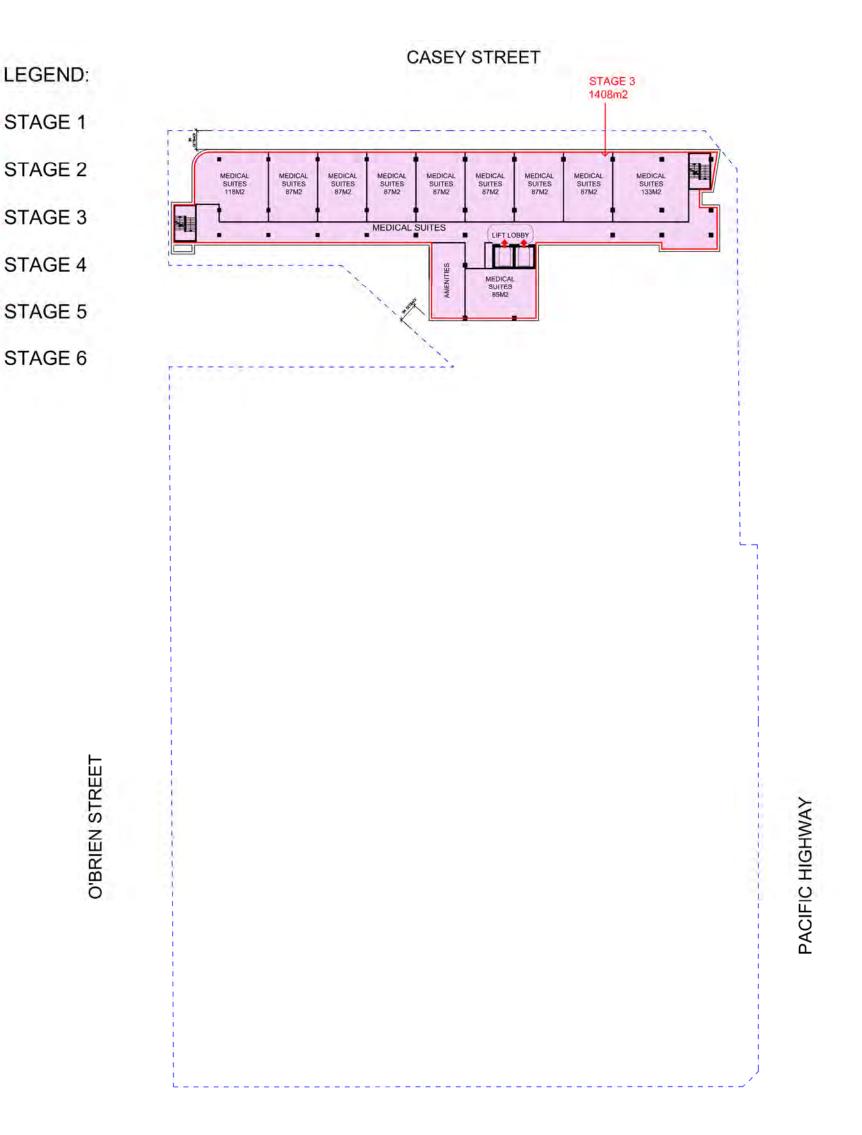
STAGE 5

STAGE 6

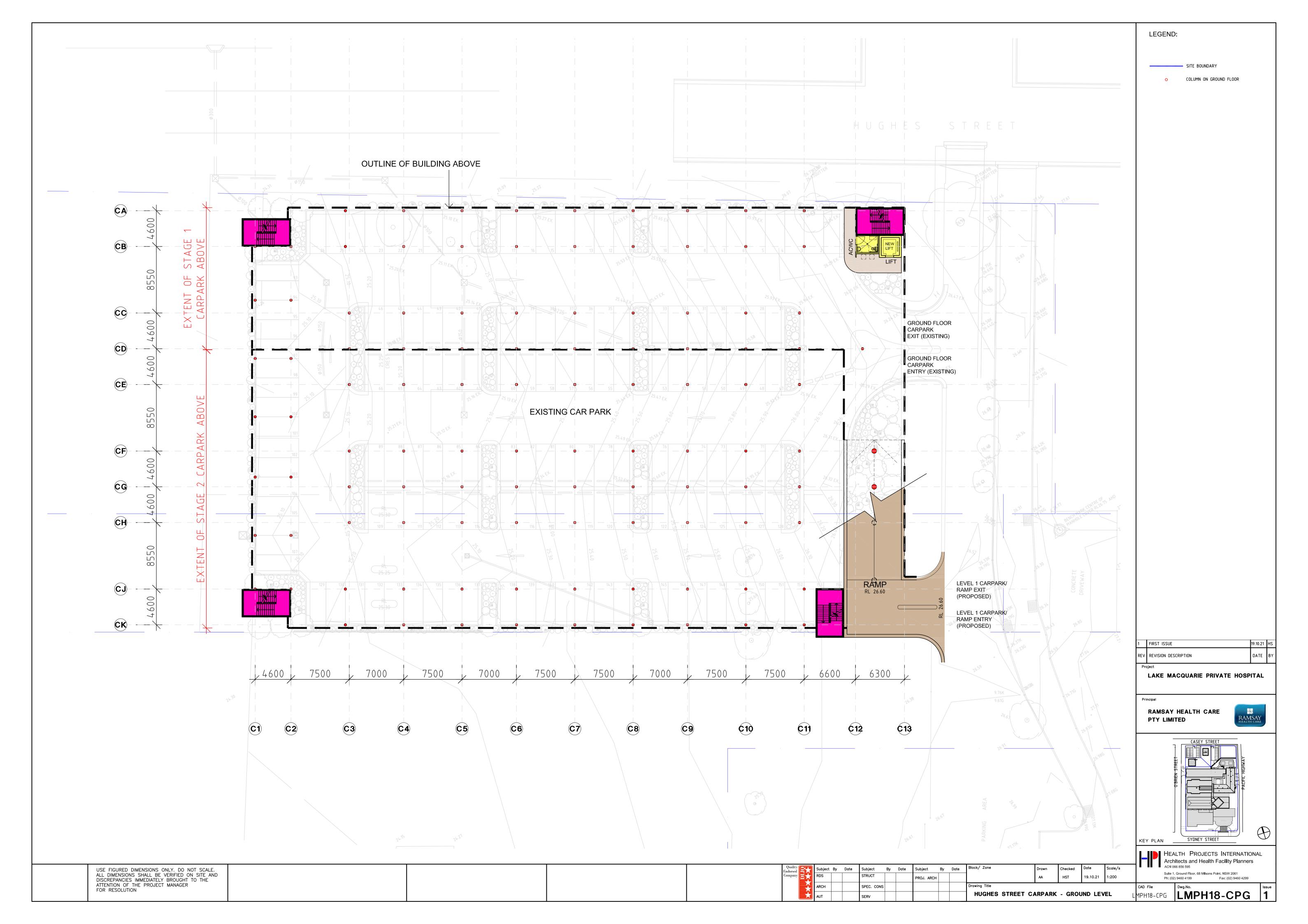
LEGEND:

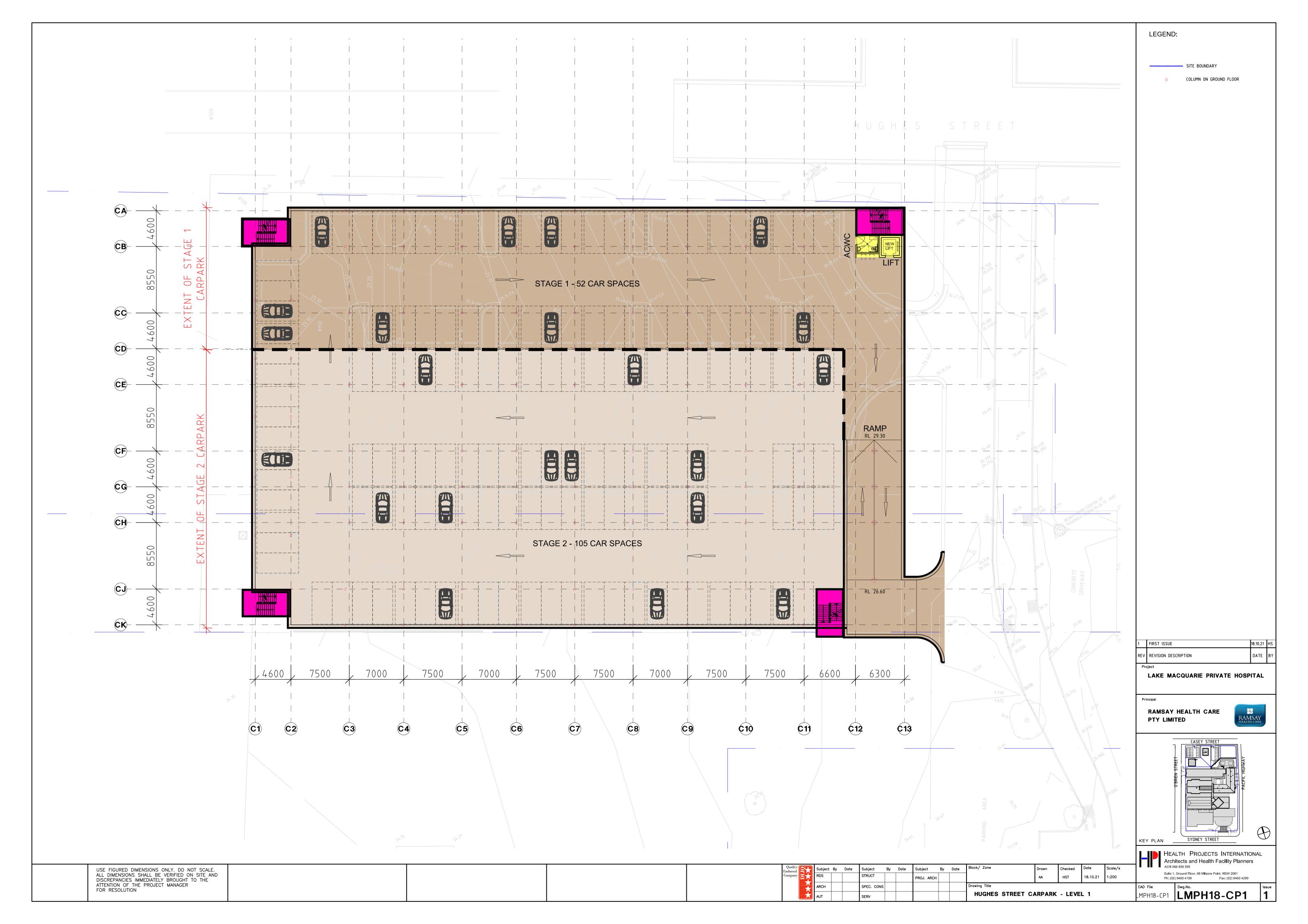
STAGE 1

STAGE 2


STAGE 3

STAGE 4

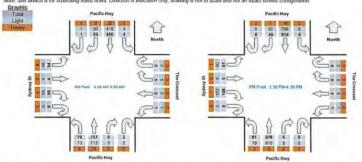

STAGE 5


STAGE 6

COPYRIGHT @ HPI

Transport and Traffic Planning Associates

Appendix C


Traffic Volume Data

TRANS TRAFFIC SURVEY TURNING MOVEMENT SURVEY ** trafficsurvey.com.au trafficsurvey.co

	mo		h Approa	ch Pacific	Hwy		Approac	h The Cre	scont	Sou	th Approx	ch Pacific	Hwy		st Approa	ch Sydne	y St	Hourl	y Total
	Period End	U	R	SB	L	U	R	WB	L	U	R	NB	L	U	R	EB	L	Hour	Peal
6:30	6;45	0	5	65	0	0	1	0	0	0	0	162	18	0	9	0	- 11	1061	
6;45	7:00	0	11	84	0	0	3	0	0	0	0	146	20	0	17	0	16	1105	
7:00	7:15	0	4	64	0	0	1	2	0	0	2	119	10	0	4	1	11	1138	
7:15	7:30	0	6	86	0	0	0	0	0	0	0	150	7	0	9	1	16	1271	
7:30	7:45	0	8	100	1	0	0	0	.0	0	0	178	9	0	9	0	10	1359	
7:45	8:00	0	12	114	0	0	0	1	0	0	2	150	19	0	21	0	11	1440	
8:00	8:15	0	17	96	0	0	0	0	0	0	1	181	26	0	14	1	15	1459	Pea
8:15	8:30	0	12	106	1	0	2	0	0	2	0	188	17	0	14	1	20	1445	
8:30	8:45	1	12	123	1	0	1	0	1	0	3	205	19	0	18	2	10	1396	
8:45	9:00	0	17	125	2	0	2	0	0	0	1	163	17	0	13	0	9		
9:00	9:15	0	- 11	102	0	0	1	1	.0	0	1	165	29	0	17	1	9		
9:15	9:30	0	4	114	0	0	0	2	0	0	0	128	31	0	25	0	10		
15:00	15:15	0	11	173	3	0	1	2	1	0	2	145	43	0	24	0	19	1722	
15:15	15:30	0	14	188	2	0	2	1	0	0	0	154	22	0	33	0	8	1730	
15:30	15:45	0	12	178	2	0	2	0	0	0	1	161	21	0	27	1	11	1761	Pea
15:45	16:00	0	12	231	2	0	2	0	0	0	0	143	23	0	25	0	20	1747	
16:00	16:15	0	14	187	1	0	1	4	1	0	3	159	19	0	30	1	12	1705	1
16:15	16:30	0	11	219	3	0	0	1.	0	0	1	155	18	0	26	3	18	1659	
16:30	16:45	0	5	190	1	0	1	1	2	0	4	153	19	0	19	11.	6	1635	
16:45	17:00	0	5	210	4	0	1	2	0	0	1	159	11	0	16	1	6	1610	
17:00	17:15	0	8	171	2	0	1	2	0	0	3	151	18	0	26	0	4	1525	
17:15	17:30	0	-11	232	1	0	0	2	1	0	2	137	12	0	23	1	9		
17:30	17:45	0	6	164	1	0	2	1	1	0	0	163	13	0	21	1	4		
17:45	18:00	0	9	176	1	0	0.	0	0	0	3	107	18	0	11	1	5		

Peak	Time	Nort	h Approa	ch Pacific	Hwy	East	Approach	h The Cre	scent	Sou	th Approa	ch Pacific	Hwy	We	st Approa	ch Sydne	y St	Peak
Period Start	Period End	U	R	SB	L	U	R	WB	L	U	R	NB	T L	U	R	EB	13436	total
8:00	9:00	1	58	450	4	0	5	0	1	2	- 5	737	79	0	59	4	54	1459
15:30	16:30	- 0	49	815	8	0	5	. 5	1	0	5.	618	81	0	108	5	61	1761

ight Vehic	me	Nort	h Approa	ch Pacific	Hwy	East	Approac	h The Cres	scent	Sou	th Approx	ch Pacific	Hwy	Wos	t Approa	ch Sydno	y St
eriod Star	Period End	U	R	SB	L	U	R	WB	L	U	R	NB	L	U	R	EB	L
6:30	6:45	0	4	62	0	0	1	0	0	0	0	156	18	0	9	0	- 11
6:45	7:00	0	11	82	0	0	3	0	0	0	0	139	20	0	17	0	16
7:00	7:15	0	4	62	0	0	1	2	0	0	2	115	10	0	4	1	11
7:15	7:30	0	6	79	0	0	0	0	0	0	0	148	7	0	9	1	14
7:30	7:45	0	8	96	1	0	0	0	0	0	0	170	9	0	8	0	10
7:45	8:00	0	12	107	0	. 0	0	1	0	0	2	144	19	0	20	0	- 11
8:00	8:15	0	14	90	0	0	0	0	0	0	1	176	23	0	13	1	14
8:15	8:30	0	8	97	1	0	2	0	0	2	0	181	16	0	12	1	18
8:30	8:45	1	11	112	1	0	1	0	1	0	3	199	18	0	18	2	8
8:45	9:00	0	17	119	2	0	2	0	0	0	1	157	16	0	12	0	8
9:00	9:15	0	10	95	0	0	1	1	0	0	1	161	29	0	15	1	6
9:15	9:30	0	4	110	0	0	0	2	0	0	0	123	31	0	23	0	9
15:00	15:15	0	- 11	167	3	0	1	2	1	0	2	138	42	0	24	0	19
15:15	15:30	0	14	180	2	0	2	1	0	0	0	149	21	0	32	0	7
15:30	15:45	0	11	174	2	0	2	0	0	0	1	161	19	0	27	1	10
15:45	16:00	0	6	227	2	0	2	0	0	0	0	139	22	0	25	0	20
16:00	16:15	0	14	183	1	0	1	4	1	0	3	155	19	0	29	1	12
16:15	16:30	0	11	215	3	0	0	1	0	0	1	155	18	0	26	3	18
16:30	16:45	0	5	189	1	0	1	1	2	0	4	150	19	0	19	1	6
16:45	17:00	0	5	209	4	0	1	2	0	0	1	156	11	0	16	1	6
17:00	17:15	0	8	169	2	0	1	2	0	0	3	151	18	0	26	0	4
17:15	17:30	0	- 11	229	1	0	0	2	1	0	2	137	12	0	23	1	9
17:30	17:45	0	6	162	1	0	2	1	1	0	0	162	13	0	21	1	4
17:45	18:00	0	9	173	1	0	0	0	0	0	3	105	18	0	11	1	5

Peak	Time	Nort	h Approa	ch Pacific	Hwy	East	Approac	h The Cre	scent	Sot	th Approa	ch Pacific	Hwy	We	st Approa	ch Sydne	y St	Peak
Period Start	Period End	U	R	SB	L	U	R	WB	A11.E-0	U	R	NB	L	U	R	EB	- 1	total
8:00	9:00	1	50	418	4	0	5	0	1	2	5	713	73	0	55	4	48	1379
15:30	16:30	0	42	799	В	0	5	5	- 1	0	5	610	78	0	107	5	60	1725

Heavy Vehic		Nort	h Approa	ch Pacific	Hwy	East	Approac	h The Cres	scent	Sou	th Approa	ch Pacific I	Hwy	Wes	st Approa	ch Sydne	y St
Period Start	Period End	U	R	SB	L	U	R	WB	L	U	R	NB	L	U	R	EB	L
6:30	6:45	0	1	3	0	0	0	0	0	0	0	6	0	0	0	0	0
6:45	7:00	0	0	2	0	0	0	0	0	0	0	7	0	0	0	0	0
7:00	7:15	0	0	2	0	0	0	0	0	0	0	4	.0	0	0	0	0
7:15	7:30	0	0	7	0	0	0	0	0	0	0	2	0	0	0	0	2
7:30	7:45	0	0	4	0	0	0	0	0	0	0	8	0	0	1	0	(
7:45	8:00	0	0	7	0	0	0	0	0	0	0	6	0	0	1	0	(
8:00	8:15	0	3	6	.0	0	0	0	0	0	.0	5	3	0	1	0	13
8:15	8:30	0	4	9	0	0	0	0	0	0	0	7	1	0	2	0	1
8:30	8:45	0	1	11	0	0	0	0	0	0	0	6.	1	0	0	0	:
8:45	9:00	0	0	6	0	0	0	0	0	0	0	6	1	0	1	0	200
9:00	9:15	0	1	7	.0	0	0	0	0	0	0	4	0	0	2	0	1
9:15	9:30	0	0	4	0	0	0	0	0	0	0	.5	0	0	2	0	
15:00	15:15	0	0	6	0	.0	0	0	0	0	0	7	1	0	0	0	
15:15	15:30	0	0	8	0	0	0	0	0	0	0	5	-1-	0	-,1-	0	
15:30	15:45	0	. 1	4	0	0	0	0	0	0	0	0.	2	0	0	.0	
15:45	16;00	0	6	4	0	0	0	0	0	0	0	4	1	0	0	0	
16:00	16:15	0	0	4	0	0	0	0	0	0	0	4	0	0	1	0	1
16:15	16:30	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	
16:30	16:45	0	0	1	0	0	0	0	0	0	0	3	0	0	0	0	
16:45	17:00	0	0	1	0	0	0	0	0	0	0	3	0	0	0	0	
17:00	17:15	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	
17:15	17:30	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	
17:30	17:45	0	0	2	0	0	0	0	0	0	0	1	0	0	0	0	
17:45	18:00	0	0	3	0	0	0	0	0	0	0	2	0	0	0	0	1

10	MOLD	n Approa	ch Pacific	Hwy	East	Approach	h The Cres	scent	Sou	th Approa	ch Pacific	Hwy	Wes	st Approa	ch Sydne	y St	Peal
riod End	U	R	SB	L	U	R	WB	L	U	R	NB	L	U	R	EB	L	tota
9:00	0	8	32	0	0	0	0	0	0	0	24	6	0	4	0	6	80
16:30	0	7	16	0	0	0	-0	0	0	0	8	3	0	- 1	0	1	36
		9:00 0	9:00 0 8	9:00 0 8 32	9:00 0 8 32 0	9:00 0 8 32 0 0	9:00 0 8 32 0 0 0	9:00 0 8 32 0 0 0 0	9:00 0 8 32 0 0 0 0 0	9:00 0 8 32 0 0 0 0 0 0	9:00 0 8 32 0 0 0 0 0 0 0	9:00 0 8 32 0 0 0 0 0 0 0 24	9:00 0 8 32 0 0 0 0 0 0 0 24 6	9:00 0 8 32 0 0 0 0 0 0 0 24 6 0	9:00 0 8 32 0 0 0 0 0 0 0 24 6 0 4	9:00 0 8 32 0 0 0 0 0 0 0 24 6 0 4 0	9:00 0 8 32 0 0 0 0 0 0 0 24 6 0 4 0 6

Carpark Access off Hughes St, Gateshead

 GPS
 -32.982678, 151.690775

 Date:
 Wed 13/10/21

 Weather:
 Overcast

 Suburban:
 Gateshead

 Customer:
 TTPA

All Vehicles

	ime	In	Out
Charles and the same of	t Period End	Jan 1885	
6:30	6:45	8	1
6:45	7:00	19	0
7:00	7:15	4	0
7:15	7:30	7	0
7:30	7:45	8	0
7:45	8:00	16	0
8:00	8:15	15	0
8:15	8:30	19	1
8:30	8:45	6	0
8:45	9:00	10	0
9:00	9:15	3	1
9:15	9:30	4	0
15:00	15:15	1	8
15:15	15:30	1	7
15:30	15:45	1	6
15:45	16:00	1	6
16:00	16:15	0	12
16:15	16:30	0	14
16:30	16:45	1	11
16:45	17:00	0	8
17:00	17:15	0	19
17:15	17:30	0	6
17:30	17:45	0	6
17:45	18:00	1	2

TRANS TRAFFIC SURVEY TURNING MOVEMENT SURVEY TURNING MOVEMENT SURVEY

Lake Macquarie Private Hospital Entrance from Sydney St, Gateshead

 GPS
 -32.981727, 151.691712

 Date:
 Wed 13/10/21

 Weather:
 Overcast

 Suburban:
 Gateshead

 Customer:
 TTPA

All Vehicles (N.B. right turn IN, not left which is to doctors car park)

Tir	<i>(N.B. right tu</i> ne	Entry	Exit
Period Start	Period End	⊏iiiiy	EXIL
6:30	6:45	0	0
6:45	7:00	3	3
7:00	7:15	3	3
7:15	7:30	1	1
7:30	7:45	2	2
7:45	8:00	3	3
8:00	8:15	1	1
8:15	8:30	3	3
8:30	8:45	2	1
8:45	9:00	3	4
9:00	9:15	3	3
9:15	9:30	1	1
15:00	15:15	5	3
15:15	15:30	3	5
15:30	15:45	1	1
15:45	16:00	4	3
16:00	16:15	5	5
16:15	16:30	1	1
16:30	16:45	2	3
16:45	17:00	0	0
17:00	17:15	2	2
17:15	17:30	1	1
17:30	17:45	3	3
17:45	18:00	2	1
18:00	18:15	3	3
18:15	18:30	2	3
18:30	18:45	3	2
18:45	19:00	1	1
19:00	19:15	0	0
19:15	19:30	0	1
19:30	19:45	2	1
19:45	20:00	1	1
20:00	20:15	1	2
20:15	20:30	1	1

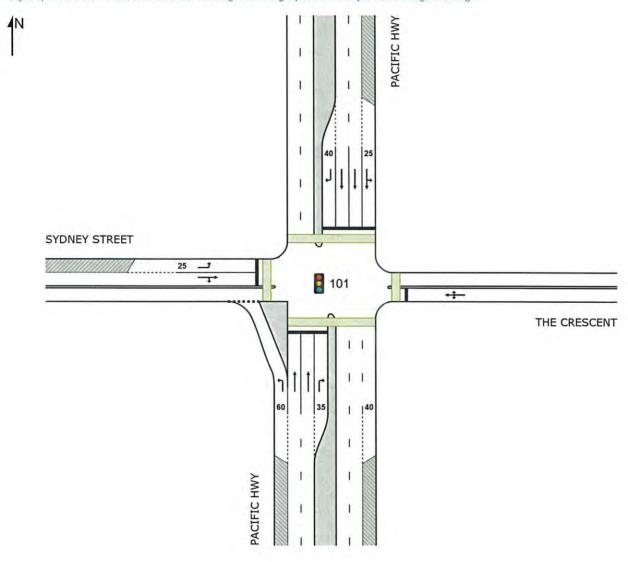
Transport and Traffic Planning Associates

Appendix D

SIDRA Results

SITE LAYOUT

Site: 101 [PACIFIC HWY & SYDNEY ST/THE CRESCENT


EXISTING LAYOUT (Site Folder: General)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TRANSPORT AND TRAFFIC PLANNING ASSOCIATES | Licence: NETWORK / 1PC | Created: Monday, 18 October 2021
4:55:39 PM

Project: T:\WORK21\21297 - LAKE MACQUARIE PRIVATE HOSPITAL - 3 SYDNEY ST, GATESHEAD\MODEL\PACIFIC HWY, SYDNEY STREET AND THE CRESCENT_2.sip9

MOVEMENT SUMMARY

Site: 101 [PACIFIC HWY & SYDNEY ST/THE CRESCENT

EXISTING AM PEAK (Site Folder: General)]

New Site

Site Category: (None)

Mov ID	Turn	INP VOLU		DEM. FLO		Deg. Satn		Level of Service		ACK OF EUE	Prop. I Que	Effective Stop	Aver.	Aver
		[Total veh/h	HV]	[Total veh/h	HV]	v/c	sec	0011100	[Veh.	Dist] m	Quo	Rate	Cycles	km/h
South	n: PAC	IFIC HW	Y											
1	L2	80	6.0	84	6.0	0.060	6.2	LOSA	0.3	2.5	0.14	0.58	0.14	47.8
2	T1	1320	6.0	1389	6.0	*0.909	50.0	LOS D	47.6	350.5	0.96	1.01	1.13	26.
3	R2	50	6.0	53	6.0	0.092	21.8	LOS B	1.6	11.9	0.61	0.69	0.61	35.
Appr	oach	1450	6.0	1526	6.0	0.909	46.6	LOS D	47.6	350.5	0.91	0.97	1.06	27.
East:	THE	CRESCE	NT											
4	L2	15	4.0	16	4.0	* 0.156	38.7	LOS C	1.6	11.9	0.86	0.72	0.86	24.
5	T1	10	4.0	11	4.0	0.156	34.7	LOSC	1.6	11.9	0.86	0.72	0.86	27.
6	R2	20	4.0	21	4.0	0.156	38.0	LOS C	1.6	11.9	0.86	0.72	0.86	27.
Appr	oach	45	4.0	47	4.0	0.156	37.5	LOS C	1.6	11.9	0.86	0.72	0.86	26.
North	: PAC	FIC HWY	(
7	L2	28	6.0	29	6.0	* 0.148	25.3	LOS B	2.1	15.1	0.79	0.66	0.79	36.
8	T1	610	6.0	642	6.0	0.542	20.7	LOS B	9.5	70.0	0.87	0.73	0.87	39.
9	R2	90	6.0	95	6.0	0.340	37.2	LOS C	3.8	28.2	0.93	0.75	0.93	30.
Appr	oach	728	6.0	766	6.0	0.542	23.0	LOS B	9.5	70.0	0.87	0.73	0.87	37.
West	: SYDI	NEY STR	EET											
10	L2	54	4.0	57	4.0	0.072	25.7	LOS B	2.0	14.8	0.61	0.65	0.61	31.
11	T1	10	4.0	11	4.0	0.552	52.5	LOS D	8.0	57.9	0.95	0.79	0.95	22.
12	R2	120	4.0	126	4.0	0.552	55.8	LOS D	8.0	57.9	0.95	0.79	0.95	21.
Appr	oach	184	4.0	194	4.0	0.552	46.8	LOS D	8.0	57.9	0.85	0.75	0.85	23
All Vehic	rles	2407	5.8	2534	5.8	0.909	39.3	LOSC	47.6	350.5	0.89	0.88	0.98	29

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Mov ID Crossing	Input Vol.	Dem.	Aver. Delay	Level of A	AVERAGE QUE		Prop. E Que		Travel	Travel	Aver
ID Grocering	VOI.	Flow	Delay	Service	[Ped	Dist]	Que	Stop Rate	Time	Dist.	Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: PACIFI	C HWY										
P1 Full	50	53	59.3	LOSE	0.2	0.2	0.96	0.96	231.4	223.8	0.97
East: THE CR	ESCEN	Γ									
P2 Full	50	53	27.6	LOSC	0.1	0.1	0.91	0.91	188.1	208.7	1.11
North: PACIFI	C HWY										

P3 Full	50	53	59.3	LOSE	0.2	0.2	0.96	0.96	231.4	223.8	0.97
West: SYDNE	Y STRE	ET									
P4 Full	50	53	59.3	LOSE	0.2	0.2	0.96	0.96	222.3	212.0	0.95
All Pedestrians	200	211	51.4	LOSE	0.2	0.2	0.94	0.94	218.3	217.1	0.99
reuestrialis			1.5								

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TRANSPORT AND TRAFFIC PLANNING ASSOCIATES | Licence: NETWORK / 1PC | Processed: Monday, 18 October 2021

Project: TiWORK21\21297 - LAKE MACQUARIE PRIVATE HOSPITAL - 3 SYDNEY ST, GATESHEAD\MODEL\PACIFIC HWY, SYDNEY STREET AND THE CRESCENT_2.sip9

MOVEMENT SUMMARY

Site: 101 [PACIFIC HWY & SYDNEY ST/THE CRESCENT

EXISTING PM PEAK (Site Folder: General)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 130 seconds (Site User-Given Phase Times)

Mov ID	Turn	INP VOLU		DEM. FLO		Deg.		Level of		ACK OF EUE		Effective	Aver.	Aver
		[Total veh/h	HV]	[Total veh/h	HV]	Satn v/c	sec	Service	[Veh. veh	Dist) m	Que	Stop Rate	Cycles	Speed km/l
South	n: PAC	IFIC HW		Verini	/0	V/C	560		VGII	- 111				KIII/
1	L2	120	6.0	126	6.0	0.090	6.1	LOSA	0.5	3.9	0.12	0.58	0.12	47.
2	T1	880	6.0	926	6.0	0.715	34.9	LOSC	24.4	179.6	0.88	0.77	0.88	32.
3	R2	50	6.0	53	6.0	0.164	31.0	LOS C	1.8	13.3	0.85	0.73	0.85	31.
Appro	oach	1050	6.0	1105	6.0	0.715	31.4	LOS C	24.4	179.6	0.79	0.75	0.79	33.
East:	THE (CRESCE	NT											
4	L2	15	4.0	16	4.0	* 0.102	32.0	LOSC	1.4	10.5	0.83	0.66	0.83	26
5	T1	10	4.0	11	4.0	0.102	27.1	LOS B	1.4	10.5	0.83	0.66	0.83	30
6	R2	10	4.0	11	4.0	0.102	30.4	LOSC	1.4	10.5	0.83	0.66	0.83	30
Appro	oach	35	4.0	37	4.0	0.102	30.1	LOS C	1.4	10.5	0.83	0.66	0.83	28
North	: PAC	IFIC HW	Y											
7	L2	30	6.0	32	6.0	0.264	21.5	LOS B	5.8	42.9	0.70	0.61	0.70	39
8	T1	1410	6.0	1484	6.0	* 0.965	53.0	LOS D	45.8	337.4	0.94	1.05	1.25	25
9	R2	60	6.0	63	6.0	0.118	26.3	LOS B	2.1	15.7	0.73	0.72	0.73	35
Appr	oach	1500	6.0	1579	6.0	0.965	51.3	LOS D	45.8	337.4	0.92	1.03	1.22	26
West	: SYDI	NEY STR	EET											
10	L2	61	4.0	64	4.0	0.072	21.7	LOS B	2.1	15.2	0.55	0.64	0.55	33
11	T1	20	4.0	21	4.0	0.567	50.0	LOS D	9.0	65.4	0.94	0.79	0.94	23
12	R2	130	4.0	137	4.0	0.567	53.3	LOS D	9.0	65.4	0.94	0.79	0.94	21
Appr	oach	211	4.0	222	4.0	0.567	43.8	LOS D	9.0	65.4	0.83	0.75	0.83	24
All Vehic	aloc	2796	5.8	2943	5.8	0.965	43.0	LOS D	45.8	337.4	0.86	0.90	1.02	28

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Mov ID Crossing	Input Vol.			Level of A Service	AVERAGE BACK OF QUEUE [Ped Dist]		Prop. Effective Que Stop Rate		Travel Time	Travel Aver. Dist. Speed	
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: PACIF	IC HWY										
P1 Full	50	53	59.3	LOS E	0.2	0.2	0.96	0.96	231.4	223.8	0.97
East: THE CR	RESCEN	Т									
P2 Full	50	53	30.9	LOS D	0.1	0.1	0.91	0.91	191.5	208.7	1.09
North: PACIFI	C HWY										

P3 Full	50	53	59.3	LOS E	0.2	0.2	0.96	0.96	231.4	223.8	0.97
West: SYDNE	Y STRE	ĔΤ		- 147 - 1							
P4 Full	50	53	59.3	LOS E	0.2	0.2	0.96	0.96	222.3	212.0	0.95
All	200	211	52.2	LOS E	0.2	0.2	0.94	0.94	219.2	217.1	0.99
Pedestrians											

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements,

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TRANSPORT AND TRAFFIC PLANNING ASSOCIATES | Licence: NETWORK / 1PC | Processed: Monday, 18 October 2021
4:55:33 PM

Project: T:\WORK21\21297 - LAKE MACQUARIE PRIVATE HOSPITAL - 3 SYDNEY ST, GATESHEAD\MODEL\PACIFIC HWY, SYDNEY STREET AND THE CRESCENT_2.sip9

MOVEMENT SUMMARY

Site: 101 [PACIFIC HWY & SYDNEY ST/THE CRESCENT

FUTURE AM PEAK (Site Folder: General)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 130 seconds (Site User-Given Phase Times)

Mov ID	Turn	INF VOLU		DEM FLO		Deg. Satn		Level of Service		ACK OF EUE	Prop. E Que	ffective Stop	Aver.	Aver
		[Total veh/h	HV]	[Total veh/h	HV] %	v/c	sec	OCIVICE	[Veh.	Dist] m	Que	Rate	Cycles	km/h
Sout	h: PAC	IFIC HW					900							10.10
1	L2	120	6.0	126	6.0	0.092	6.6	LOSA	0.7	5.4	0.18	0.60	0.18	47.
2	T1	1320	6.0	1389	6.0	* 0.927	55.1	LOS D	51.1	376.5	0.96	1.05	1.18	25.
3	R2	50	6.0	53	6.0	0.092	21.8	LOS B	1.6	11.9	0.61	0.69	0.61	35.
Appr	oach	1490	6.0	1568	6.0	0.927	50.0	LOS D	51.1	376.5	0.89	1.00	1.08	26.
East	THE	CRESCE	NT											
4	L2	15	4.0	16	4.0	* 0.156	38.7	LOS C	1.6	11.9	0.86	0.72	0.86	24.
5	T1	10	4.0	11	4.0	0.156	34.7	LOS C	1.6	11.9	0.86	0.72	0.86	27.
6	R2	20	4.0	21	4.0	0.156	38.0	LOS C	1.6	11.9	0.86	0.72	0.86	27
Appr	oach	45	4.0	47	4.0	0.156	37.5	LOS C	1.6	11.9	0.86	0.72	0.86	26
North	n: PAC	IFIC HW	Y											
7	L2	28	6.0	29	6.0	*0.148	25.3	LOS B	2.1	15.1	0.79	0.66	0.79	36.
8	T1	610	6.0	642	6.0	0.542	20.7	LOS B	9.5	70.0	0.87	0.73	0.87	39.
9	R2	130	6.0	137	6.0	0.491	44.6	LOS D	5.6	41.2	0.96	0.82	0.96	28.
Appr	oach	768	6.0	808	6.0	0.542	24.9	LOS B	9.5	70.0	0.88	0.75	0.88	36
Wes	t: SYDI	NEY STR	REET											
10	L2	65	4.0	68	4.0	0.086	25.9	LOS B	2.5	18.0	0.61	0.66	0.61	31.
11	T1	10	4.0	11	4.0	0.614	53.0	LOS D	8.7	62.9	0.96	0.80	0.96	22
12	R2	130	4.0	137	4.0	0.614	56.3	LOS D	8.7	62.9	0.96	0.80	0.96	21.
Appr	oach	205	4.0	216	4.0	0.614	46.5	LOS D	8.7	62.9	0.85	0.76	0.85	23
All Vehic		2508	5.8	2640	5.8	0.927	41.8	LOSC	51.1	376.5	0.88	0.90	1.00	28

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of , Service	AVERAGE BACK OF QUEUE		Prop. Effective Que Stop		Travel Time	Travel Dist.	Aver. Speed
	ped/h	ped/h	sec		[Ped ped	Dist] m		Rate	sec		m/sec
South: PACIF	C HWY										-
P1 Full	50	53	59.3	LOSE	0.2	0.2	0.96	0.96	231.4	223.8	0.97
East: THE CR	ESCEN'	T									
P2 Full North: PACIFI	50	53	27.6	LOSC	0.1	0.1	0.91	0.91	188.1	208.7	1.11

P3 Full	50	53	59.3	LOSE	0.2	0.2	0.96	0.96	231.4	223.8	0.97
West: SYDNE	Y STRE	ΕT		•	*					• ••	
P4 Full	50	53	59.3	LOS E	0.2	0.2	0.96	0.96	222.3	212.0	0.95
All	200	211	51.4	LOSE	0,2	0.2	0.94	0.94	218.3	217.1	0.99
Pedestrians						4			4.11	1.5	

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TRANSPORT AND TRAFFIC PLANNING ASSOCIATES | Licence: NETWORK / 1PC | Processed: Monday, 18 October 2021
4:55:32 PM

4:55:32 PM

Project: T:\WORK21\21297 - LAKE MACQUARIE PRIVATE HOSPITAL - 3 SYDNEY ST, GATESHEAD\MODEL\PACIFIC HWY, SYDNEY
STREET AND THE CRESCENT_2.sip9

MOVEMENT SUMMARY

Site: 101 [PACIFIC HWY & SYDNEY ST/THE CRESCENT

FUTURE PM PEAK (Site Folder: General)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 130 seconds (Site User-Given Phase Times)

Mov ID	Turn	INF VOLL		DEM. FLO		Deg. Satn		Level of Service		ACK OF EUE	Prop. Que	Effective Stop	Aver. No.	Aver
		[Total veh/h	HV]	[Total veh/h	HV] %	v/c	sec	Service	[Veh.	Dist] m	Que	Rate	Cycles	km/h
Sout	h: PAC	IFIC HW												
1	L2	130	6.0	137	6.0	0.099	6.3	LOSA	0.7	4.8	0.14	0.59	0.14	47.8
2	T1	880	6.0	926	6.0	0.718	34.9	LOSC	24.6	180.8	0.88	0.77	0.88	32.
3	R2	50	6.0	53	6.0	0.163	31.0	LOS C	1.8	13.3	0.85	0.73	0.85	31.
Appr	oach	1060	6.0	1116	6.0	0.718	31.2	LOS C	24.6	180.8	0.79	0.75	0.79	33.
East	THE	CRESCE	NT											
4	L2	15	4.0	16	4.0	* 0.102	32.0	LOS C	1.4	10.5	0.83	0.66	0.83	26.
5	T1	10	4.0	11	4.0	0.102	27.1	LOS B	1.4	10.5	0.83	0.66	0.83	30.
6	R2	10	4.0	11	4.0	0.102	30.4	LOS C	1.4	10.5	0.83	0.66	0.83	30
Appr	oach	35	4.0	37	4.0	0.102	30.1	LOS C	1.4	10.5	0.83	0.66	0.83	28
North	n: PAC	IFIC HW	Y											
7	L2	30	6.0	32	6.0	0.266	21.5	LOS B	5.9	43.3	0.70	0.61	0.70	39.
8	T1	1410	6.0	1484	6.0	*0.973	56.3	LOS D	46.6	343.1	0.94	1.07	1.27	24.
9	R2	80	6.0	84	6.0	0.157	27.2	LOS B	2.9	21.5	0.75	0.74	0.75	34.
Appr	oach	1520	6.0	1600	6.0	0.973	54.0	LOS D	46.6	343.1	0.92	1.04	1.24	25.
Wes	t: SYDI	NEY STF	REET											
10	L2	80	4.0	84	4.0	0.095	21.9	LOS B	2.8	20.1	0.56	0.65	0.56	33
11	T1	20	4.0	21	4.0	0.694	52.3	LOS D	10.9	78.9	0.96	0.84	1.01	22
12	R2	154	4.0	162	4.0	0.694	55.6	LOS D	10.9	78.9	0.96	0.84	1.01	21
Appr	oach	254	4.0	267	4.0	0.694	44.7	LOS D	10.9	78.9	0.83	0.78	0.87	24
All Vehic	oloo	2869	5.8	3020	5.8	0.973	44.5	LOS D	46.6	343.1	0.86	0.91	1.03	27

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

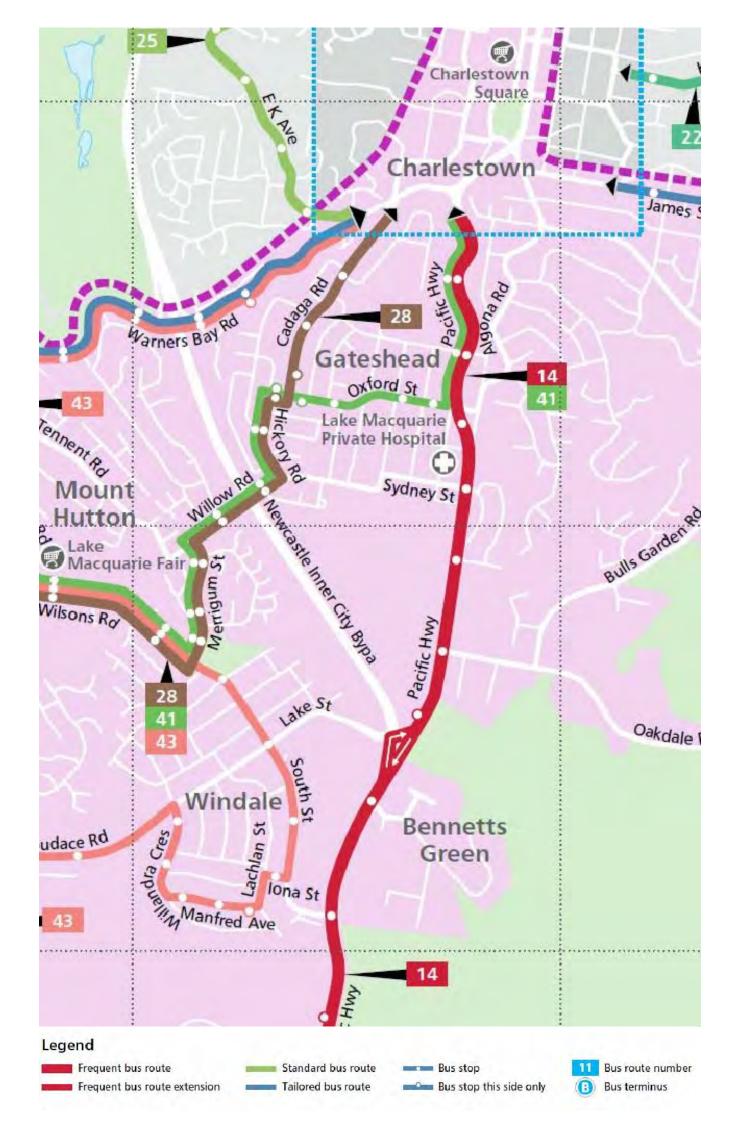
Mov ID Crossing	Input Vol.	Dem. Flow ped/h	Aver. Delay sec	Level of / Service	AVERAGE BACK OF QUEUE		Prop. Effective Que Stop		Travel Time	Travel Dist.	Aver. Speed
	ped/h				[Ped ped	Dist] m		Rate	sec		m/sec
South: PACIFI	IC HWY										1
P1 Full	50	53	59.3	LOS E	0.2	0.2	0.96	0.96	231.4	223.8	0.97
East: THE CR	ESCEN	T									
P2 Full	50	53	30.9	LOS D	0.1	0.1	0.91	0.91	191.5	208.7	1.09
North: PACIFI	C HWY										

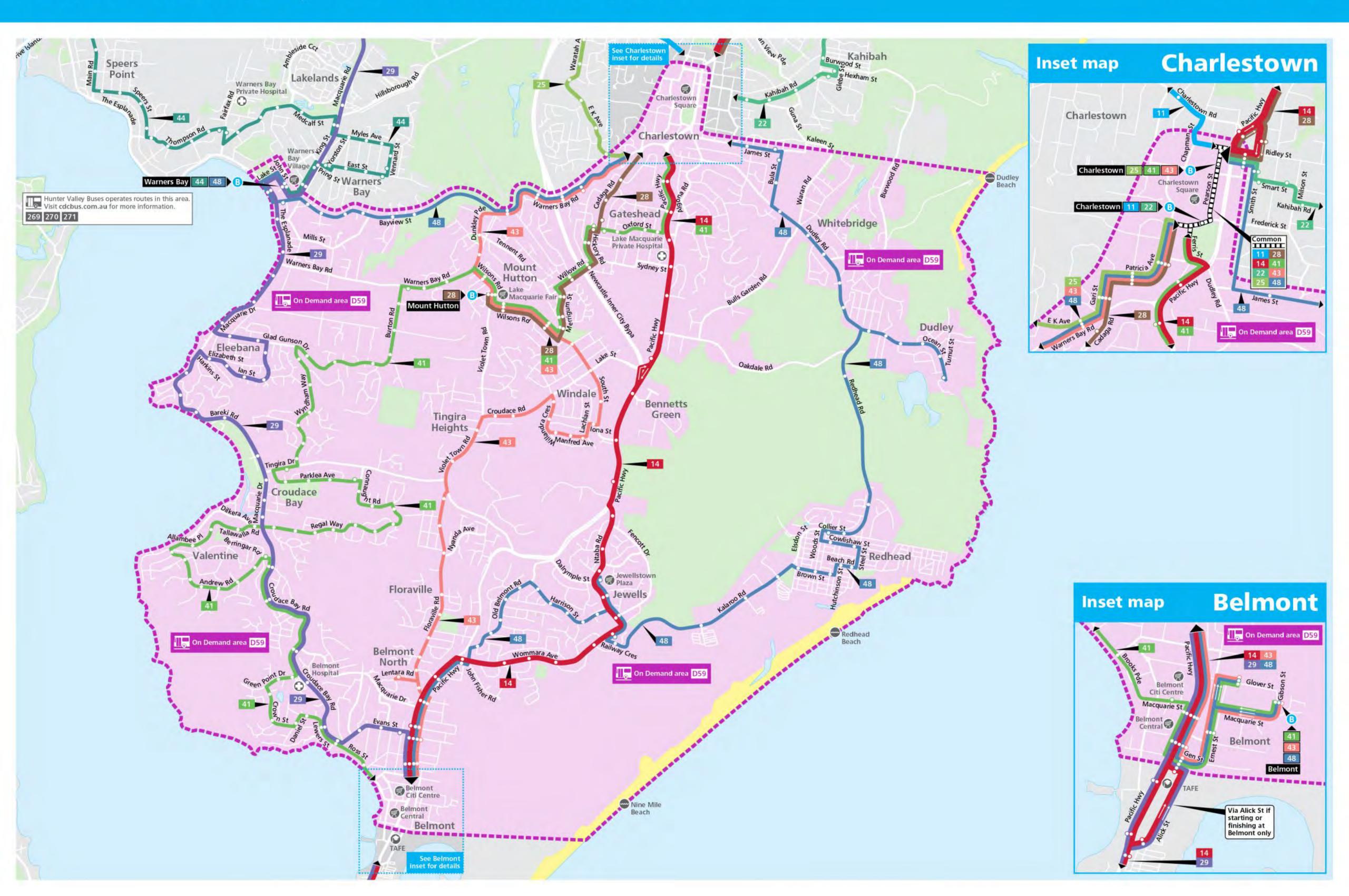
P3 Full	50	53	59,3	LOS E	0.2	0.2	0.96	0.96	231.4	223.8	0.97
West: SYDNE	EY STREE	ĒΤ									
P4 Full	50	53	59.3	LOS E	0.2	0.2	0.96	0.96	222.3	212.0	0.95
All Pedestrians	200	211	52.2	LOS E	0.2	0.2	0.94	0.94	219.2	217.1	0.99

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcellk and Associates Pty Ltd | sidrasolutions.com
Organisation: TRANSPORT AND TRAFFIC PLANNING ASSOCIATES | Licence: NETWORK / 1PC | Processed: Monday, 18 October 2021

4:55:34 PM


Project: T:\WORK21\21297 - LAKE MACQUARIE PRIVATE HOSPITAL - 3 SYDNEY ST, GATESHEAD\MODEL\PACIFIC HWY, SYDNEY STREET AND THE CRESCENT_2.sip9


Transport and Traffic Planning Associates

Appendix E

Bus Services



COVID-19 Updates:

R Lake Macquarie On Demand service

From 13 December, Lake Macquarie On Demand customers will be able to access Opal Connect, including travel credit. Opal Pay will no longer be available on these services from 1 April 2021. Find out more about Opal Connect.

The Lake Macquarie On Demand service area covers Charlestown, Dudley, Whitebridge, Gateshead, Redhead, Warners Bay, Mount Hutton, Windale, Tingira Heights, Eleebana, Croudace Bay, Valentine, Belmont North and Belmont areas.

From key activity centres such as Charlestown, Warners Bay, Mount Hutton and Belmont you can connect with bus routes to continue your journey beyond the On Demand area.

The On Demand service runs in addition to existing regular timetabled services. An On Demand bus will pick you up near your home or a convenient nearby location, and take you to where you want to go within the On Demand area.

The service is operated by Newcastle Transport and began Sunday 14 January 2018.

Find out more at <u>newcastletransport.info</u> .

Book via the app			
To book, you can download the Newcastle Transport On Demand App from the <u>App Store</u>	or <u>Google Play</u>	and then log in with your <u>Opal Connect</u> credentials.	
App store			
Google Play			
Booking information	•		
Another way to book	•		

Fares

A one-way trip is equivalent to Opal peak and off-peak (/tickets-opal/opal/fares-payments/opal-peak-off-peak-fares) bus fares.

Adult

Distance	0 - 3 km
Peak	\$3.20
Off peak	\$2.24

Peak	\$3.79
Off peak	\$2.65
Distance	8+ km
Peak	\$4.87
Off peak	\$3.40

Concession

Concession fare eligibility: concession card holders, including pensioners, seniors, students and apprentices.

Distance	0 - 3 km
Peak	\$1.60
Off peak	\$1,12
Distance	3 - 8 km
Peak	\$1,89
Off peak	\$1.32
Distance	8+ km
Peak	\$2.43
Off peak	\$1.70

Hours of operation

Monday to Friday

9am-4pm

Saturday

7am-6pm

Sunday

9am-6pm

Sunday hours of operation will be in place on all public holidays.

What is travel credit?

With Opal Connect, you can earn up to \$2 in travel credit every time you transfer within 60 minutes between Opal and On Demand services.

You will need an Opal Connect account to start earning travel credit. Sign up for an Opal Connect account, link your Opal card and add a payment card. Get the Newcastle Transport On Demand app from the App Store or Google Play , or if you have it, make sure it is up-to-date. Then log in to the app using your Opal Connect account username and password to complete your setup

Once you've completed these steps, any travel credit you earn will be added to your Opal Connect account. When you have accumulated enough credit, you can use it to pay for your next On Demand trip.

For more details, see the Opal Connect travel credit help page (/opal-connect-help).

Map

The Lake Macquarie On Demand service area covers Dudley, Whitebridge, Mount Hutton, Windale, Tingira Heights, Eleebana, Warners Bay, Bennetts Green, Gateshead and Charlestown. From 30 June 2019 this area has been expanded to include Belmont, Belmont North, Croudace Bay, Valentine, Floraville, Jewells, and Redhead.

Download the Newcastle Transport On Demand trial area map from June 30 2019 (pdf 633KB) (/document/4214/lake-macquarie-on-demand-map-20190630.pdf)

How to use this timetable

This timetable provides a snapshot of service information in 24-hour time (e.g. 5am = 05:00, 5pm = 17:00). Information contained in this timetable is subject to change without notice. Please note that timetables do not include minor stops, additional trips for special events, short term changes, holiday timetable changes, real-time information or any disruption alerts.

For the most up-to-date times, use the Trip Planner or Departures at **transportnsw.info**

Real-time planning

You can plan your trip with real-time information using the Trip Planner or Departures at **transportnsw.info** or by downloading travel apps on your smartphone or tablet.

The Trip Planner, Departures and travel apps offer various features:

- · favourite your regular trips
- · see where your service is on the route
- · get estimated pick-up and arrival times
- receive service updates
- · find nearby stations, stops, wharves and routes
- · check accessibility information.

Find the latest apps at transportnsw.info/apps

Accessible services

All new buses are wheelchair-accessible with low-level floors and space for wheelchairs, prams or strollers. Look for the symbol in this timetable. Some older buses may not have all the features you need. There will be more accessible services as older buses are replaced.

Who is providing my bus services?

The bus services shown in this timetable are run by Newcastle Transport.

Fares

In Sydney and surrounding regions, fares are based on:

- the distance you travel from tap on to tap off
- the mode of transport you choose
- whether you're eligible for a concession fare or free travel
- any Opal benefits such as discounts and capped fares that apply.

You can use an Opal card or a contactless payment to pay for your travel.

Opal cards

An Opal card is a smartcard you keep and reuse. Add value before you travel, and tap on and tap off to pay your fares throughout Sydney, the Blue Mountains, the Central Coast, the Hunter and the Illawarra.

Which Opal card is right for you?

Adult – Customers 16 years or older who are not entitled to any concessions and normally pay full fare.

Child/Youth – For customers aged 4-15 (inclusive), or customers 16 years or older who hold a NSW/ACT Senior Secondary Student Concession Card.

Gold Senior/Pensioner – For eligible NSW and interstate seniors, pensioners, war widows/ers and asylum seekers.

Concession – For eligible tertiary students, job seekers, apprentices and trainees.

How to get an Opal card

You can get an Adult or Child/Youth Opal card over the counter at Opal retailers that display the Opal sign . To find your nearest retailer visit **transportnsw.info/opal**.

If you are eligible to travel with concession fares, you can apply for a Gold Senior/Pensioner or Concession Opal card online. Visit **transportnsw.info/opal** for more information.

Contactless payments

If you have an American Express, Mastercard, Visa card or linked device, you can use it to pay for all public transport on the Opal network. Just make sure to tap on and tap off at Opal readers at the beginning and end of your trip.

Always separate your cards when you tap on and tap off so your preferred card is charged.

You will receive the same travel benefits of an Adult Opal card when you tap on and tap off consistently with the same credit card, debit card or linked device. This includes daily, weekly and weekend travel caps, and a \$2 transfer discount when you change between metro/train, ferry, bus and light rail services within 60 minutes. Adult Opal fare pricing applies.

Find out more at transportnsw.info/contactless

Explanation of definitions and symbols

Wheelchair Accessible

F Friday only

Operates Early Saturday morning only

Valid from: 12 July 2021

Creation date: 15 Oct 2021

NOTE: Information is correct on date of download.

Monday to Friday	b	6	6	ይ	Ł.	Ł	Ł.	E	ક
Customs House, Watt St, Newcastle	05:17	05:47	06:10	06:29	06:56	07:14	07:29	07:44	07:59
Darby St before Bull St, Cooks Hill	05:23	05:53	06:16	06:35	07:02	07:20	07:35	07:50	08:05
Junction Fair, Glebe Rd, The Junction	05:29	05:59	06:22	06:41	07:08	07:27	07:42	07:57	08:12
Glebe Rd opp Adamstown Uniting Church,	05:36	06:06	06:29	06:48	07:15	07:34	07:49	08:04	08:19
Adamstown								4.5.5.	
Westfield Kotara, Park Ave, Kotara	05:41	06:11	06:34	06:53	07:20	07:39	07:54	08:09	08:24
Charlestown Square, Pearson St, Stand B,	05:50	06:20	06:44	07:03	07:30	07:51	08:05	08:20	08:34
Charlestown						2000		22.52	00.0
Charlestown Square, Frederick St, Stand D,	05:51	06:21	06:45	07:04	07:31	07:52	08:08	08:21	08:36
Charlestown						31155	, , , , ,	00121	00.50
Pacific Hwy after Oxford St, Gateshead	05:56	06:26	06:50	07:09	07:37	07:58	4	08:28	1.2
Jewells Plaza, Ntaba Rd, Jewells	06:02	06:32	06:57	07:16	07:45	08:06	-	08:36	-
Pacific Hwy at Cobbin Pde, Belmont	06:07	06:37	07:02	07:21	07:52	08:12	-	08:42	-
Pacific Hwy opp Macquarie St, Belmont	06:10	06:40	07:05	07:24	07:55	08:15	-	08:45	-
Pacific Hwy opp Marks Point Rd, Marks Point	06:14	06:44	_	07:28	08:00	08:20	_	08:50	
Bowman St opp Lake Rd, Swansea	06:20	06:50	-	07:34	08:07	08:26	-	08:56	-
Park Ave opp Swansea High School, Caves Beach	06:23	06:53	= 1	07:38	08:11	08:30	-	09:00	1
Lambton Pde at Hamilton St, Swansea Heads	06:30	07:00	_	07:45	08:18	08:37	-	09:07	-
Alick St opp Spinnakers Leisure Park, Belmont	1.00	-	07:07	-	-	-	-	-	
Monday to Friday	<u>&</u>	Ł.	E.	6.	Ł.	Tr.			(mail)
Customs House, Watt St, Newcastle	08:14	08:27	08:42	08:54	09:09	<u>اج</u> 09:24	<u>ل</u> 09:39	<u>ا</u> ا	10,00
Darby St before Bull St, Cooks Hill	08:20	08:33	08:48	09:00	09:05	09:30	09:45	10:00	10:09
Junction Fair, Glebe Rd, The Junction	08:27	08:40	08:55	09:07	09:13	09.30	09:45		10:15
Glebe Rd opp Adamstown Uniting Church,	08:34	08:47	09:02	09:14	09:22	09.37	09:52	10:07	10:22
Adamstown	00.54	00.47	09.02	09.14	09.29	09.44	09:59	10:14	10:29
Westfield Kotara, Park Ave, Kotara	08:39	08:52	09:07	09:19	09:34	09:49	10:04	10:19	10:34
Charlestown Square, Pearson St, Stand B,	08:50	09:03	09:17	09:19	09:43	09:59	10:04	10:19	10:34
Charlestown									10:43
CHUICSCOVII	00.50	05.05	03.17	09.29	03.43	09.39	10.14	10.29	
									10.44
Charlestown Square, Frederick St, Stand D,	08:53	09:04	09:19	09:31	09:44	10:01	10:14	10:31	10:44
Charlestown Square, Frederick St, Stand D, Charlestown		09:04	09:19		09:44	10:01	10:15	10:31	
Charlestown Square, Frederick St, Stand D, Charlestown Pacific Hwy after Oxford St, Gateshead		09:04 09:11	09:19		09:44 09:51	10:01	10:15 10:21	10:31	10:51
Charlestown Square, Frederick St, Stand D, Charlestown Pacific Hwy after Oxford St, Gateshead Jewells Plaza, Ntaba Rd, Jewells		09:04 09:11 09:19	09:19		09:44 09:51 09:58	10:01	10:15 10:21 10:28	10:31	10:51 10:58
Charlestown Square, Frederick St, Stand D, Charlestown Pacific Hwy after Oxford St, Gateshead Jewells Plaza, Ntaba Rd, Jewells Pacific Hwy at Cobbin Pde, Belmont	08:53	09:04 09:11 09:19 09:25	09:19	09:31	09:44 09:51 09:58 10:04	10:01	10:15 10:21 10:28 10:34	10:31	10:51 10:58 11:04
Charlestown Square, Frederick St, Stand D, Charlestown Pacific Hwy after Oxford St, Gateshead Jewells Plaza, Ntaba Rd, Jewells Pacific Hwy at Cobbin Pde, Belmont Pacific Hwy opp Macquarie St, Belmont	08:53	09:04 09:11 09:19 09:25 09:28	09:19		09:44 09:51 09:58 10:04 10:07	10:01	10:15 10:21 10:28 10:34 10:37	10:31	10:51 10:58 11:04 11:07
Charlestown Square, Frederick St, Stand D, Charlestown Pacific Hwy after Oxford St, Gateshead Jewells Plaza, Ntaba Rd, Jewells Pacific Hwy at Cobbin Pde, Belmont Pacific Hwy opp Macquarie St, Belmont Pacific Hwy opp Marks Point Rd, Marks Point	08:53	09:04 09:11 09:19 09:25 09:28 09:33	09:19	09:31	09:44 09:51 09:58 10:04 10:07 10:12	10:01	10:15 10:21 10:28 10:34 10:37	10:31	10:51 10:58 11:04 11:07 11:12
Charlestown Square, Frederick St, Stand D, Charlestown Pacific Hwy after Oxford St, Gateshead Jewells Plaza, Ntaba Rd, Jewells Pacific Hwy at Cobbin Pde, Belmont Pacific Hwy opp Macquarie St, Belmont Pacific Hwy opp Marks Point Rd, Marks Point Bowman St opp Lake Rd, Swansea	08:53	09:04 09:11 09:19 09:25 09:28 09:33 09:39	09:19	09:31	09:44 09:51 09:58 10:04 10:07 10:12 10:18	10:01	10:15 10:21 10:28 10:34 10:37	10:31	10:51 10:58 11:04 11:07 11:12 11:18
Charlestown Square, Frederick St, Stand D, Charlestown Pacific Hwy after Oxford St, Gateshead Jewells Plaza, Ntaba Rd, Jewells Pacific Hwy at Cobbin Pde, Belmont Pacific Hwy opp Macquarie St, Belmont Pacific Hwy opp Marks Point Rd, Marks Point Bowman St opp Lake Rd, Swansea Park Ave opp Swansea High School, Caves Beach	08:53	09:04 09:11 09:19 09:25 09:28 09:33 09:39 09:43	09:19	09:31	09:44 09:51 09:58 10:04 10:07 10:12 10:18 10:22	10:01	10:15 10:21 10:28 10:34 10:37	10:31	10:44 10:51 10:58 11:04 11:07 11:12 11:18 11:22
Charlestown Square, Frederick St, Stand D, Charlestown Pacific Hwy after Oxford St, Gateshead Jewells Plaza, Ntaba Rd, Jewells Pacific Hwy at Cobbin Pde, Belmont Pacific Hwy opp Macquarie St, Belmont Pacific Hwy opp Marks Point Rd, Marks Point Bowman St opp Lake Rd, Swansea	08:53	09:04 09:11 09:19 09:25 09:28 09:33 09:39	09:19	09:31	09:44 09:51 09:58 10:04 10:07 10:12 10:18	10:01	10:15 10:21 10:28 10:34 10:37	10:31	10:51 10:58 11:04 11:07 11:12 11:18

Monday to Friday	E	Ġ.	[£.]	Ł.	8	b	Ł	b.	6
	10:24	10:39	10:54	11:09	11:24		11:54	12:09	12:24
	10:30	10:45	11:00	11:15	11:30	11:45	12:00	12:09	12:24
	10:37	10:52	11:07	11:22		11:52	12:07	12:15	12:30
이 그들 없이 내려가 그리고 있는데 되었다면 되었다면 하는데 하는데 되었다면 하는데 되었다면 하는데 되었다면 하는데 되었다면 하는데 되었다면 하는데 되었다면 하는데 하는데 되었다면 하는데 되었다면 하는데 하는데 되었다면 하는데	10:44	10:59	11:14	11:29	11:44		12:14	12:22	12:37
Adamstown		10155		11.23	11.77	11.55	12.14	12.29	12.44
	10:49	11:04	11:19	11.34	11:49	12:04	12:19	12:34	12:49
그 사고 있다면 하다 가게 그 하는 그리고 있다고 있다고 있는 것이 없는 것이 없는 것이 없다고 있다.	10:59		11:29	11:43	11:59	12:14	12:29	12:44	12:59
Charlestown	. 0.05	. 102.1	11123	11,43	11.55	12.14	12.23	12.44	12.59
	11:01	11:15	11:31	11.44	12:01	12:15	12:31	12:45	13:01
Charlestown		11.15	11.51	11.77	12.01	12.13	12.51	12.43	13.01
Pacific Hwy after Oxford St, Gateshead	-	11:21	_	11:51	-	12:21	-	12:51	12
Jewells Plaza, Ntaba Rd, Jewells	-	11:28	-	11:58	-	12:28		12:58	
Pacific Hwy at Cobbin Pde, Belmont	=	11:34	2	12:04	-	12:34	2		12
Pacific Hwy opp Macquarie St, Belmont	-	11:37	-	12:07		12:37	-	13:04 13:07	
Pacific Hwy opp Marks Point Rd, Marks Point	_	-	-	12:12		-	4		
Bowman St opp Lake Rd, Swansea	-	_	-	12:18			-	13:12	- 1
Park Ave opp Swansea High School, Caves Beach	-	_	_	12:13		_	1.2	13:18	121
Lambton Pde at Hamilton St, Swansea Heads	4	_		12:29	-	-		13:22	-
Alick St opp Spinnakers Leisure Park, Belmont		11:39	- 1	12.23	-	12:39	-	13:29	
									-
Monday to Friday	હ	Ł.	Ł	Ł.	Ł.	క	Ł.	E.	<u>E</u>
	12:39	12:54	13:09	13:24	13:39	13:54	14:09	14:24	14:39
	12:45	13:00	13:15	13:30	13:45	14:00	14:15	14:30	14:45
# 10 프로그램 등 그런 10 H 10 H	12:52	13:07	13:22	13:37	13:52	14:07	14:22	14:37	14:52
	12:59	13:14	13:29	13:44	13:59	14:14	14:29	14:44	14:59
Adamstown									
그리고 살이다. 살이렇지는 시간이 바다 하는데 하면서 하다가 하다면서 하면서 가지는 때문에 모든데 하다.	13:04	13:19	13:34	13:49	14:04	14:19	14:34	14:49	15:04
	13:14	13:29	13:43	13:59	14:14	14:29	14:44	14:58	15:15
Charlestown									
	13:15	13:31	13:44	14:01	14:15	14:31	14:46	14:59	15:16
Charlestown									
	13:21	1.7	13:51	-	14:21	~	-	15:06	15:22
Jewells Plaza, Ntaba Rd, Jewells	13:28	1.5	13:58	-	14:28	-	-	15:13	15:32
Pacific Hwy at Cobbin Pde, Belmont	13:34	1.7	14:04	-	14:34	-	-	15:19	15:38
	13:37	1.4	14:07	-	14:37	-	-	15:22	15:41
Pacific Hwy opp Marks Point Rd, Marks Point	-	1=	14:12	-	_	-	-	15:27	15:46
Bowman St opp Lake Rd, Swansea	-	17	14:18	-	-	-	-	15:33	15:52
Park Ave opp Swansea High School, Caves Beach	-	-	14:22	-	=	-	-	15:37	15:56
Lambton Pde at Hamilton St, Swansea Heads	-	19	14:29	-	-	-	-		16:03
Alick St opp Spinnakers Leisure Park, Belmont 1	13:39	i ii	-	+0.4	14:39		-		350
Monday to Friday	b	<u>t</u>	Ł	Ł	ક	<u> </u> &	6.		
	14:54	15:09	15:24	15:39	15:54	16:09	16:24	16,20	16.54
	15:01	15:15	15:30	15:45	16:00	16:15	16:30	16:39	16:54
	15:09	15:22	15:37	15:52	16:07	16:22	16:37	16:45	17:00
그리는 그렇게 하면 내가 있다면 하는 것이 되었다면 하는 것이 되었다면 하는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이다면 없다면 없다면 없다면 없다면 없다면 없다면 없다면 없다면 없다면 없	15:16		15:44	15:58	16:13		16:43	16:52	17:07
Adamstown	13.10	13.23	13,44	13.36	10.15	16:28	16:43	16:58	17:13
	15:21	15:34	15.40	16:03	16.10	16.22	10.40	17.00	17.10
그렇게 가게 가게 생겨지 그리아 생활을 하셨다면 하나 있습니다. 그리아 가게 되었다면 하는데, 그리아		15:44			16:18	16:33	16:48	17:03	17:18
Charlestown	15.55	13.44	13.36	16:13	16:28	16:43	16:58	17:12	17:28
	15:34	15:46	15.50	16.15	10.20	10.45	47.00	47.45	
Charlestown	13.54	15,40	15:59	16:15	16:29	16:45	17:00	17:13	17:30
	15.40	37.5	10.00		16.25				
	15:40	-0-	16:06	-	16:35	-	-	17:19	-
	15:49		16:13	- 5	16:42	= 11	-	17:27	-
	15:55	=	16:19	-3-	16:48	-	-	17:33	-
Pacific Hww opp Marks Baint Bd Marks Bill	15:58	3.1	16:22	-	16:51	=	-	17:36	-
Pacific Hwy opp Marks Point Rd, Marks Point	-	- 0	16:27	_5	16:56	-	2	17:41	.21
Bowman St opp Lake Rd, Swansea Park Ave opp Swansea High School, Caves Beach	_	-	16:33	31	17:03	-	-	17:48	-
raik Ave upp swansea High School, Caves Beach									
Lambton Doo at Hamilton Ct. C.	-		16:37	=	17:07	-		17:52	-
Lambton Pde at Hamilton St, Swansea Heads	- 6:00	-	16:37 16:44	-	17:07 17:14	-	4	17:52 17:59	1

Monday to Friday	Ł.	<u></u>	(b.	b	6	d.	6	E	6
Customs House, Watt St, Newcastle	17:09			17:47	18:02		18:32	18:47	
Darby St before Bull St, Cooks Hill	17:17	17:32		17:53	18:11	18:23	18:38	18:52	
Junction Fair, Glebe Rd, The Junction	17:25	17:39		17:59	18:19		18:44	18:58	
Glebe Rd opp Adamstown Uniting Church,	17:32			18:06	18:27		18:51	19:05	
Adamstown				,		,0.50	10.51	13.03	13.20
Westfield Kotara, Park Ave, Kotara	17:37	17:50	17:58	18:11	18:31	18:41	18:56	19:09	19:24
Charlestown Square, Pearson St, Stand B,	17:46		18:08	18:21	18:42	18:51	19:05	19:18	
Charlestown		1.515.5	. 0.00	10.21	10.12	10.51	13.03	13.10	15.55
Charlestown Square, Frederick St, Stand D,	17:47	18:01	18:09	18:21	18:44	18:52	19:06	19:20	19:35
Charlestown		1.5154	100			10.52	13.00	13.20	15.55
Pacific Hwy after Oxford St, Gateshead	17:54	18:06	-	18:26		-	19:11	1.5	12.
Jewells Plaza, Ntaba Rd, Jewells	18:02		-	18:31	-	-	19:16	1	12
Pacific Hwy at Cobbin Pde, Belmont	18:08	18:16		18:36	-	4	19:21	. 14	- 2
Pacific Hwy opp Macquarie St, Belmont	18:11	18:19		18:39	-		19:24		
Pacific Hwy opp Marks Point Rd, Marks Point	18:16	18:23	0.	18:43	- 19	-	19:28		1.2
Bowman St opp Lake Rd, Swansea	18:22	18:29	_	18:49	-		19:34		
Park Ave opp Swansea High School, Caves Beach	18:26	18:32	-	18:53		-	19:37		
Lambton Pde at Hamilton St, Swansea Heads	18:32	18:39	-	18:59		_	19:44		
Monday to Friday	b	الح. الح. الح. الح. الح. الح. الح. الح.						(873)	
Day Restrictions	<u>a</u>	[6]	<u>&</u>	<u>&</u>	<u>&</u>	色	<u>&</u>	6	<u>ا</u>
Customs House, Watt St, Newcastle	19:29	19:59	20:29	20:59	21:34	21:59	22:29	22.20	C 01:05
Darby St before Bull St, Cooks Hill	19:34	20:04	20:34	21:04	21:39		22:34		C 01:05
Junction Fair, Glebe Rd, The Junction	19:40	20:10	20:40	21:10	21:45		22:40		
Glebe Rd opp Adamstown Uniting Church,	19:47	20:17	20:47		21:52	22:17			C 01:13 C 01:18
Adamstown	13.47	20.17	20.47	21.17	21.32	22.17	22.47	23:47	C 01:18
Westfield Kotara, Park Ave, Kotara	19:51	20:21	20:51	21:21	21:56	22:21	22.E1	22.51	C01.22
Charlestown Square, Pearson St, Stand B,	20:01	20:30	21:01	21:31		22:30	22:51		C01:22
Charlestown	20.01	20.50	21.01	21.51	22.05	22.30	23:00	00:01	C 01:29
Charlestown Square, Frederick St, Stand D,	20:01	20:32	21:01	21:32	22.06	22.22	22.01	00.01	604.20
Charlestown	20.01	20.32	21.01	21.52	22.06	22:32	23:01	00:01	C 01:29
Pacific Hwy after Oxford St, Gateshead	20:06	-	21:06	14	22.11		22.00	00.00	604.24
Jewells Plaza, Ntaba Rd, Jewells	20:11		21:11	-	22:11		23:06		C 01:34
Pacific Hwy at Cobbin Pde, Belmont	20:16	-			22:16	-	23:11		C 01:39
Pacific Hwy opp Macquarie St, Belmont	20:18		21:16		22:21		23:17		C01:44
Pacific Hwy opp Marks Point Rd, Marks Point	20:18	3	21:18		22:23	-	23:18		C 01:46
Bowman St opp Lake Rd, Swansea	20:28		21:22	-	22:27				C01:49
Park Ave opp Swansea High School, Caves Beach			21:28		22:33	-	-		C 01:53
Lambton Pde at Hamilton St, Swansea Heads			21:31	-	22:36				C 01:56
Alick St opp Spinnakers Leisure Park, Belmont	20:38		21:38		22:43	-			C 02:01
						-	23:19	00:19	
Monday to Friday	E.	&	, v				, University		
Customa Haves West St. N	F	F							
Customs House, Watt St, Newcastle	C 02:05								
Darby St before Bull St, Cooks Hill	C 02:09								
Junction Fair, Glebe Rd, The Junction	C 02:13								
Glebe Rd opp Adamstown Uniting Church,	C 02:18	C 03:18							
Adamstown									
Westfield Kotara, Park Ave, Kotara	C 02:22								
Charlestown Square, Pearson St, Stand B,	C 02:29	C 03:29							
Charlestown									
Charlestown Square, Frederick St, Stand D,	C 02:29	C03:29							
Charlestown									
Pacific Hwy after Oxford St, Gateshead	C 02:34								
Jewells Plaza, Ntaba Rd, Jewells	C 02:39								
Pacific Hwy at Cobbin Pde, Belmont	C02:44								
Pacific Hwy opp Macquarie St, Belmont	C02:46								
Pacific Hwy opp Marks Point Rd, Marks Point	C02:49								
Bowman St opp Lake Rd, Swansea	C02:53	C03:53							
Bowman St opp Lake Rd, Swansea Park Ave opp Swansea High School, Caves Beach Lambton Pde at Hamilton St, Swansea Heads	C 02:53 C 02:56	C03:53 C03:56							

Customs House, Watt St, Newcastle O5:10 O6:10 O6:40 O7:10 O7:40 O8:10 O8:40 O9:10 O7:45 O7:46	09:40 09:46 09:52 10:00 10:05 10:15 10:16 10:22 10:29 10:35 10:43 10:43 10:49 10:53 11:00
Darby St before Bull St, Cooks Hill Junction Fair, Glebe Rd, The Junction Glebe Rd opp Adamstown Uniting Church, Adamstown Westfield Kotara, Park Ave, Kotara Charlestown Square, Pearson St, Stand B, Charlestown Square, Frederick St, Stand D, Charlestown Pacific Hwy after Oxford St, Gateshead Jewells Plaza, Ntaba Rd, Jewells Pacific Hwy at Cobbin Pde, Belmont Pacific Hwy opp Marks Point Rd, Marks Point Bowman St opp Lake Rd, Swansea Park Ave opp Swansea High School, Caves Beach Lambton Pde at Hamilton St, Swansea Heads Alick St opp Spinnakers Leisure Park, Belmont Darby St before Bull St, Cooks Hill Darby St before Bull St, Cooks Hill O5:15 06:15 06:26 06:26 06:26 06:26 06:26 06:26 06:26 06:27 07:27 07:29 07:27 07:29 07:30 07:31 08:03 08:33 09:05 09:35 09:44 09:15 09:44 09:15 09:45 09:45 09:45 09:45 09:45 09:45 09:45 09:45 09:45 09:45 09:45 09:45 09:45 09:45 09:45 09:45 09:45 09:46 09:45 09:44 09:15 09:4	09:46 09:52 10:00 10:05 10:15 10:16 10:22 10:29 10:35 10:43 10:43 10:49 10:53 11:00
Junction Fair, Glebe Rd, The Junction Glebe Rd opp Adamstown Uniting Church, Adamstown Westfield Kotara, Park Ave, Kotara Charlestown Square, Pearson St, Stand B, Charlestown Charlestown Square, Frederick St, Stand D, Charlestown Pacific Hwy after Oxford St, Gateshead Jewells Plaza, Ntaba Rd, Jewells Pacific Hwy at Cobbin Pde, Belmont Pacific Hwy opp Marks Point Rd, Marks Point Bowman St opp Lake Rd, Swansea Park Ave opp Swansea High School, Caves Beach Lambton Pde at Hamilton St, Swansea Heads Alick St opp Spinnakers Leisure Park, Belmont Darby St before Bull St, Cooks Hill O5:20 06:20 06:52 07:21 07:52 08:22 08:25 09:22 09:35 06:30 07:03 07:31 08:03 08:33 09:05 09:35 07:40 06:40 07:13 07:41 08:13 08:42 09:15 09:44 07:40 08:12 08:42 09:15 09:44 08:42 09:15 09:44 08:43 09:16 09:45 08:45 07:46 08:19 08:50 09:22 09:52 08:56 06:56 07:29 07:57 08:31 09:02 09:35 10:04 08:30 08:34 09:05 09:38 10:08 08:30 09:05 09:38 08:30 09:05 09:44 08:40 07:13 07:41 08:13 08:43 09:16 09:45 08:40 07:41 08:13 08:43 09:16 09:45 08:40 09:45 09:49 09:59 08:40 08:40 07:13 07:41 08:13 08:43 09:16 09:45 08:40 09:40 09:59 08:40 08:42 09:15 09:44 08:42 09:15 09:44 08:43 09:16 09:45 08:45 09:29 09:59 08:50 09:29 09:59 08:50 09:20 09:59 08:50 07:24 07:52 08:25 08:56 09:29 09:59 08:50 09:59 08:50 09:44 08:45 09:49 09:50 08:46 09:49 09:59 08:46 09:49 09:59 08:46 09:49 09:59 08:46 09:49 09:59 08:47 09:49 09:49 08:48 09:49 09:59 08:48 09:49 09:59 08:48 09:49 09:59 08:48 09:49 09:49 08:40 09:49 09:59 08:40 08:49 09:49 08:40 09:49 08:40 09:49 09:59 08:40 08:49 09:49 08:40 09:49 09:50 09:49 09:45 09:49	09:52 10:00 10:05 10:15 10:16 10:22 10:29 10:35 10:43 10:49 10:53 11:00
Glebe Rd opp Adamstown Uniting Church, Adamstown Westfield Kotara, Park Ave, Kotara Charlestown Square, Pearson St, Stand B, Charlestown Square, Frederick St, Stand D, Charlestown Pacific Hwy after Oxford St, Gateshead Jewells Plaza, Ntaba Rd, Jewells Pacific Hwy at Cobbin Pde, Belmont Pacific Hwy opp Marcy Spinnakers Leisure Park, Belmont Somman St opp Lake Rd, Swansea Park Ave opp Swansea High School, Caves Beach Lambton Pde at Hamilton St, Swansea Heads Alick St opp Spinnakers Leisure Park, Belmont Darby St before Bull St, Cooks Hill O5:26 O6:26 O6:26 O6:26 O6:30 O7:03 O7:31 O7:40 O8:12 O7:40 O8:12 O7:40 O8:12 O7:40 O8:13 O8:43 O9:16 O9:45 O9:4	10:00 10:05 10:15 10:16 10:22 10:29 10:35 10:43 10:49 10:53 11:00
Adamstown Westfield Kotara, Park Ave, Kotara Charlestown Square, Pearson St, Stand B, Charlestown Square, Frederick St, Stand D, Charlestown Charlestown Square, Frederick St, Stand D, Charlestown Pacific Hwy after Oxford St, Gateshead Jewells Plaza, Ntaba Rd, Jewells Pacific Hwy at Cobbin Pde, Belmont Pacific Hwy opp Macquarie St, Belmont Pacific Hwy opp Macquarie St, Belmont Pacific Hwy opp Marks Point Rd, Marks Point Bowman St opp Lake Rd, Swansea Park Ave opp Swansea High School, Caves Beach Lambton Pde at Hamilton St, Swansea Heads Alick St opp Spinnakers Leisure Park, Belmont Darby St before Bull St, Cooks Hill O5:30 06:30 07:03 07:41 08:03 08:04 09:05 09:42 09:45 05:40 06:45 07:13 07:41 08:13 08:43 09:16 09:45 05:40 06:45 07:18 07:46 08:19 08:50 09:22 09:55 06:51 06:51 07:24 07:52 08:25 08:56 09:29 09:59 07:52 08:25 08:56 09:29 09:59 07:53 08:00 08:34 09:05 09:38 10:08 05:59 06:59 07:32 08:00 08:34 09:05 09:38 10:08 05:59 06:59 07:32 08:00 08:34 09:05 09:38 10:08 05:50 06:50 07:29 07:57 08:31 09:02 09:35 10:04 05:50 06:50 07:29 07:57 08:31 09:02 09:35 10:04 05:50 06:50 07:29 07:57 08:31 09:02 09:35 10:04 05:50 06:50 07:29 07:57 08:31 09:02 09:35 10:04 05:50 06:50 07:29 07:57 08:31 09:02 09:35 10:04 05:50 06:50 07:29 07:57 08:31 09:02 09:35 10:04 05:50 06:50 07:29 07:57 08:31 09:02 09:35 10:04 05:50 06:50 07:29 07:57 08:31 09:02 09:35 10:04 05:50 06:50 07:29 07:57 08:31 09:02 09:35 10:04 05:50 06:50 07:29 07:57 08:31 09:02 09:35 10:04 05:50 06:50 07:29 07:57 08:31 09:02 09:35 10:04 05:50 06:50 07:29 07:57 08:31 09:02 09:35 10:04 05:50 06:50 07:29 07:57 08:31 09:02 09:35 10:04 05:50 06:50 07:29 07:57 08:31 09:02 09:35 10:04 05:50 06:50 07:29 07:57 08:31 09:02 09:35 10:04 05:50 06:50 07:29 07:57 08:31 09:02 09:35 10:04 05:50 06:50 07:29 07:57 08:31 09:02 09:35 10:04 05:50 06:50 07:29 07:57 08:31 09:02 09:35 10:04 05:50 06:50 07:29 07:57 08:31 09:02 09:35 10:04 05:50 06:50 07:29 07:57 08:31 09:02 09:59 07:50 08:50 07:40 08:50 09:29 09:59 08:50 08:50 09:29 09:59 08:50 08:50 09:29	10:05 10:15 10:16 10:22 10:29 10:35 10:43 10:49 10:53 11:00
Charlestown Square, Pearson St, Stand B, Charlestown Charlestown Square, Frederick St, Stand D, Charlestown Pacific Hwy after Oxford St, Gateshead Jewells Plaza, Ntaba Rd, Jewells Pacific Hwy at Cobbin Pde, Belmont Pacific Hwy opp Macquarie St, Belmont Pacific Hwy opp Macquarie St, Belmont Pacific Hwy opp Marks Point Rd, Marks Point Bowman St opp Lake Rd, Swansea Park Ave opp Swansea High School, Caves Beach Lambton Pde at Hamilton St, Swansea Heads Alick St opp Spinnakers Leisure Park, Belmont Darby St before Bull St, Cooks Hill O5:39 06:39 07:12 07:40 08:12 08:42 09:15 09:44 05:40 06:40 07:13 07:41 08:13 08:43 09:16 09:45 05:45 06:45 07:18 07:46 08:19 08:50 09:22 09:52 06:50 07:22 07:52 08:25 08:56 09:29 09:59 07:50 06:50 07:29 07:57 08:31 09:02 09:35 10:04 05:50 06:50 07:29 07:57 08:31 09:02 09:35 10:	10:15 10:16 10:22 10:29 10:35 10:43 10:49 10:53 11:00
Charlestown Square, Pearson St, Stand B, Charlestown Charlestown Square, Frederick St, Stand D, Charlestown Pacific Hwy after Oxford St, Gateshead Jewells Plaza, Ntaba Rd, Jewells Pacific Hwy at Cobbin Pde, Belmont Pacific Hwy opp Macquarie St, Belmont Pacific Hwy opp Macquarie St, Belmont Pacific Hwy opp Marks Point Rd, Marks Point Bowman St opp Lake Rd, Swansea Park Ave opp Swansea High School, Caves Beach Lambton Pde at Hamilton St, Swansea Heads Alick St opp Spinnakers Leisure Park, Belmont Darby St before Bull St, Cooks Hill O5:39 O6:39 O7:12 O7:40 O8:12 O7:40 O8:12 O7:40 O8:12 O8:42 O9:15 O9:44 O9:15 O9:44 O9:45 O9:49 O9:59 O9:5	10:15 10:16 10:22 10:29 10:35 10:43 10:49 10:53 11:00
Charlestown Square, Frederick St, Stand D, Charlestown Square, Frederick St, Stand D, Charlestown Pacific Hwy after Oxford St, Gateshead Jewells Plaza, Ntaba Rd, Jewells Pacific Hwy at Cobbin Pde, Belmont Pacific Hwy opp Macquarie St, Belmont Pacific Hwy opp Marks Point Rd, Marks Point Bowman St opp Lake Rd, Swansea Park Ave opp Swansea High School, Caves Beach Lambton Pde at Hamilton St, Swansea Heads Alick St opp Spinnakers Leisure Park, Belmont Darby St before Bull St, Cooks Hill O5:40 O6:40 O7:13 O7:41 O8:13 O7:40 O8:19 O8:50 O7:20 O7:52 O8:50 O7:20 O7:52 O8:50 O7:52 O8:50 O7:50 O7:50 O7:50 O7:50 O7:50 O7:50 O7:40	10:16 10:22 10:29 10:35 10:38 10:43 10:49 10:53 11:00
Charlestown Pacific Hwy after Oxford St, Gateshead Jewells Plaza, Ntaba Rd, Jewells Pacific Hwy at Cobbin Pde, Belmont Pacific Hwy opp Macquarie St, Belmont Pacific Hwy opp Marks Point Rd, Marks Point Bowman St opp Lake Rd, Swansea Park Ave opp Swansea High School, Caves Beach Lambton Pde at Hamilton St, Swansea Heads Alick St opp Spinnakers Leisure Park, Belmont Saturday Customs House, Watt St, Newcastle Darby St before Bull St, Cooks Hill O5:45 O6:45 O7:18 O7:46 O7:46 O7:52 O7:52 O8:25 O8:56 O9:29 O9:52 O9:53 O9:03 O9:03 O9:03 O9:03 O9:04 O9:04 O9:05 O9:08 O9:08 O9:08 O9:08 O9:09 O9:10 O9:08 O9:08 O9:08 O9:08 O9:08 O9:08 O9:08 O9:09 O9:08 O	10:22 10:29 10:35 10:38 10:43 10:49 10:53 11:00
Charlestown Pacific Hwy after Oxford St, Gateshead 05:45 06:45 07:18 07:46 08:19 08:50 09:22 09:52 Jewells Plaza, Ntaba Rd, Jewells 05:51 06:51 07:24 07:52 08:25 08:56 09:29 09:59 Pacific Hwy at Cobbin Pde, Belmont 05:56 06:56 07:29 07:57 08:31 09:02 09:35 10:04 Pacific Hwy opp Macquarie St, Belmont 05:59 06:59 07:32 08:00 08:34 09:05 09:38 10:08 Pacific Hwy opp Marks Point Rd, Marks Point - - 07:36 - 08:39 - 09:43 - Bowman St opp Lake Rd, Swansea - - 07:42 - 08:45 - 09:49 - Park Ave opp Swansea High School, Caves Beach - - 07:46 - 08:49 - 09:53 - Lambton Pde at Hamilton St, Swansea - - 07:53 - 08:56 - 10:00 - Alick St opp Spinnakers Leisure Park, Belmont 06:02 07:02 - 08:03 -	10:22 10:29 10:35 10:38 10:43 10:49 10:53 11:00
Jewells Plaza, Ntaba Rd, Jewells 05:51 06:51 07:24 07:52 08:25 08:56 09:29 09:59 Pacific Hwy at Cobbin Pde, Belmont Pacific Hwy opp Macquarie St, Belmont Pacific Hwy opp Marks Point Rd, Marks Point	10:29 10:35 10:38 10:43 10:49 10:53 11:00
Pacific Hwy at Cobbin Pde, Belmont 05:56 06:56 07:29 07:57 08:31 09:02 09:35 10:04 Pacific Hwy opp Macquarie St, Belmont 05:59 06:59 07:32 08:00 08:34 09:05 09:38 10:08 Pacific Hwy opp Marks Point Rd, Marks Point - - 07:36 - 08:39 - 09:43 - Bowman St opp Lake Rd, Swansea - - 07:42 - 08:45 - 09:49 - Park Ave opp Swansea High School, Caves Beach - - 07:46 - 08:49 - 09:53 - Lambton Pde at Hamilton St, Swansea Heads - - 07:53 - 08:56 - 10:00 - Alick St opp Spinnakers Leisure Park, Belmont 06:02 07:02 - 08:03 - 09:08 - 10:11 Saturday Customs House, Watt St, Newcastle 10:10 10:40 11:10 11:40 12:10 12:40 13:10 13:40 Darby St before Bull St, Cooks Hill 10:16 10:46 11:16 11:46<	10:35 10:38 10:43 10:49 10:53 11:00
Pacific Hwy opp Macquarie St, Belmont Pacific Hwy opp Marks Point Rd, Marks Point Pack Rd, Swansea	10:35 10:38 10:43 10:49 10:53 11:00
Pacific Hwy opp Marks Point Rd, Marks Point	10:43 10:49 10:53 11:00
Bowman St opp Lake Rd, Swansea	10:49 10:53 11:00
Park Ave opp Swansea High School, Caves Beach - - 07:46 - 08:49 - 09:53 - Lambton Pde at Hamilton St, Swansea Heads - - 07:53 - 08:56 - 10:00 - Alick St opp Spinnakers Leisure Park, Belmont 06:02 07:02 - 08:03 - 09:08 - 10:11 Saturday S	10:53 11:00
Lambton Pde at Hamilton St, Swansea Heads Alick St opp Spinnakers Leisure Park, Belmont O6:02 07:02 - 08:03 - 09:08 - 10:10 Saturday Customs House, Watt St, Newcastle Darby St before Bull St, Cooks Hill D1:10 10:40 11:16 11:46 12:16 12:46 13:16 13:46	11:00
Alick St opp Spinnakers Leisure Park, Belmont 06:02 07:02 - 08:03 - 09:08 - 10:11 Saturday Customs House, Watt St, Newcastle Darby St before Bull St, Cooks Hill 10:16 10:46 11:16 11:46 12:16 12:46 13:16 13:46	
Saturday E<	64.0
Customs House, Watt St, Newcastle Darby St before Bull St, Cooks Hill 10:10 10:40 11:10 11:40 12:10 12:40 13:10 13:40 10:16 10:46 11:16 11:46 12:16 12:46 13:16 13:46	
Customs House, Watt St, Newcastle 10:10 10:40 11:10 11:40 12:10 12:40 13:10 13:40 Darby St before Bull St, Cooks Hill 10:16 10:46 11:16 11:46 12:16 12:46 13:16 13:46	E.
Darby St before Bull St, Cooks Hill 10:16 10:46 11:16 11:46 12:16 12:46 13:16 13:46	14:10
	14:16
Junction Fair, Glebe Rd, The Junction 10:22 10:52 11:22 11:52 12:22 12:52 13:52	14:22
Glebe Rd opp Adamstown Uniting Church, 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00	14:30
Adamstown	
Westfield Kotara, Park Ave, Kotara 10:35 11:05 11:35 12:05 12:35 13:05 13:35 14:05	14:35
Charlestown Square, Pearson St, Stand B, 10:45 11:15 11:45 12:15 12:45 13:15 13:45 14:15	14:45
Charlestown	
Charlestown Square, Frederick St, Stand D, 10:46 11:16 11:46 12:16 12:46 13:16 13:46 14:16	14:46
Charlestown	
Pacific Hwy after Oxford St, Gateshead 10:52 11:22 11:52 12:22 12:52 13:22 13:52 14:23	14:53
Jewells Plaza, Ntaba Rd, Jewells 10:59 11:29 11:59 12:29 12:59 13:29 13:59 14:30	15:00
Pacific Hwy at Cobbin Pde, Belmont 11:04 11:35 12:04 12:35 13:04 13:35 14:04 14:36	15:05
Pacific Hwy opp Macquarie St, Belmont 11:08 11:38 12:08 12:38 13:08 13:38 14:08 14:39	15:09
Pacific Hwy opp Marks Point Rd, Marks Point - 11:43 - 12:43 - 13:43 - 14:44	_
Bowman St opp Lake Rd, Swansea – 11:49 – 12:49 – 13:49 – 14:50	=
Park Ave opp Swansea High School, Caves Beach - 11:53 - 12:53 - 13:53 - 14:54	-
Lambton Pde at Hamilton St, Swansea Heads – 12:00 – 13:00 – 14:00 – 15:01	-
Alick St opp Spinnakers Leisure Park, Belmont 11:11 - 12:11 - 13:11 - 14:11 -	15:12
Saturday & & & & & & & & & & & & & & & & & & &	હ
Customs House, Watt St, Newcastle 14:40 15:10 15:40 16:10 16:40 17:10 17:40 18:10	18:40
Darby St before Bull St, Cooks Hill 14:46 15:16 15:47 16:16 16:46 17:16 17:46 18:16	18:46
Junction Fair, Glebe Rd, The Junction 14:52 15:22 15:53 16:22 16:52 17:22 17:52 18:22	18:52
Glebe Rd opp Adamstown Uniting Church, 15:00 15:30 16:00 16:29 16:59 17:29 17:59 18:29	18:58
Adamstown	
Westfield Kotara, Park Ave, Kotara 15:05 15:35 16:05 16:34 17:04 17:34 18:04 18:34	19:03
Charlestown Square, Pearson St, Stand B, 15:15 15:45 16:14 16:43 17:13 17:43 18:13 18:43	19:11
Charlestown	
Charlestown Square, Frederick St, Stand D, 15:16 15:46 16:15 16:44 17:14 17:44 18:14 18:44	19:12
Charlestown	
Pacific Hwy after Oxford St, Gateshead 15:23 15:53 16:22 16:50 17:20 17:50 18:19 18:50	19:17
Jewells Plaza, Ntaba Rd, Jewells 15:30 16:00 16:28 16:56 17:26 17:56 18:25 18:56	19:23
Pacific Hwy at Cobbin Pde, Belmont 15:36 16:05 16:34 17:01 17:32 18:01 18:30 19:01	19:28
Pacific Hwy opp Macquarie St, Belmont 15:39 16:09 16:37 17:05 17:35 18:04 18:33 19:04	19:31
Pacific Hwy opp Marks Point Rd, Marks Point 15:44 - 16:42 - 17:40 - 18:38 -	19:35
Bowman St opp Lake Rd, Swansea 15:50 - 16:48 - 17:46 - 18:43 -	19:40
Park Ave opp Swansea High School, Caves Beach 15:54 - 16:52 - 17:50 - 18:47 -	19:44
Lambitan Dilatti Vita Ci C VI L Lambi	
Lambton Pde at Hamilton St, Swansea Heads 16:01 - 16:59 - 17:50 - 18:47 - 16:52 - 17:50 - 18:53 - 16:68 St opp Spinnakers Leisure Park, Belmont - 16:12 - 17:08 - 18:07 - 19:07	19:50

Saturday	E.	6	E.	E.	6.	l&	&	E	(8)
Customs House, Watt St, Newcastle	19:10	20:10			23:10			C 02:05	C02:05
Darby St before Bull St, Cooks Hill	19:16	20:16	21:16	22:16	23:16			C 02:09	
Junction Fair, Glebe Rd, The Junction	19:22	20:22		22:22	23:22	00.10	C01.09	C 02:09	C03:09
Glebe Rd opp Adamstown Uniting Church,	19:28	20:28	21:28	22:28					
Adamstown	13.20	20.20	21.20	22.20	25.20	00.28	C 01:18	C 02:18	C 03:18
Westfield Kotara, Park Ave, Kotara	19:33	20:33	21:33	22:33	22.22	00.22	c 04 22	enn nn	400.00
Charlestown Square, Pearson St, Stand B,	19:41	20:40	21:40	22:40	23:33 23:40			C02:22	
Charlestown	13.41	20.40	21.40	22.40	23:40	00:40	C 01:29	C 02:29	C 03:29
Charlestown Square, Frederick St, Stand D,	19:42	20:41	21.41	22.41	22.44	00.44	604.20	500.00	
Charlestown	19.42	20.41	21:41	22:41	23:41	00:41	C 01:29	C 02:29	C 03:29
Pacific Hwy after Oxford St, Gateshead	19:47	20:47	21.47	22.47	22.47	00.47	en4 24		
Jewells Plaza, Ntaba Rd, Jewells	19:53	20:53	21:47		23:47			C 02:34	
Pacific Hwy at Cobbin Pde, Belmont	19.53		21:53	22:53	23:53			C 02:39	
Pacific Hwy opp Macquarie St, Belmont		20:58	21:58	22:58	23:58			C 02:44	
Pacific Hwy opp Marks Point Rd, Marks Point	20:01	21:01	22:01	23:01	00:01			C 02:46	
Bowman St opp Lake Rd, Swansea	- 1	21:05	22:05	23:05	00:05			C 02:49	
Park Ave opp Swansea High School, Caves Beach		21:10	22:10	23:10	00:10			C 02:53	
Lambton Ddo at Hamilton St. Swanner Hand		21:14	22:14		00:14			C 02:56	
Lambton Pde at Hamilton St, Swansea Heads	20.04	21:20	22:20	23:20	00:20		C 02:01	C 03:01	C 04:01
Alick St opp Spinnakers Leisure Park, Belmont	20:04	140	-		77	01:04	-	9	-
Sunday & Public Holidays	b	હ	<u>&</u>	<u>b</u>	E	b.	Ł.	b	Ł
Customs House, Watt St, Newcastle	06:10	06:40		07:40	08:10	08:40	09:10	09:40	10:10
Darby St before Bull St, Cooks Hill	06:15	06:45	07:15	07:46	08:16	08:46	09:16	09:46	10:16
Junction Fair, Glebe Rd, The Junction	06:20	06:52	07:21	07:52	08:22	08:52	09:22	09:52	10:22
Glebe Rd opp Adamstown Uniting Church,	06:26	06:58	07:27	07:59	08:29	09:00	09:30	10:00	10:30
Adamstown									
Westfield Kotara, Park Ave, Kotara	06:30	07:03	07:31	08:03	08:33	09:05	09:35	10:05	10:35
Charlestown Square, Pearson St, Stand B,	06:39	07:12	07:40	08:12	08:42	09:14	09:44	10:15	10:44
Charlestown									
Charlestown Square, Frederick St, Stand D,	06:41	07:13	07:42	08:13	08:44	09:15	09:46	10:16	10:46
Charlestown									
Pacific Hwy after Oxford St, Gateshead		07:18	-	08:19	A1	09:22	-	10:22	9
Jewells Plaza, Ntaba Rd, Jewells	1.0	07:24	-	08:25	-	09:29	-	10:29	-
Pacific Hwy at Cobbin Pde, Belmont	-	07:29	-	08:31	4	09:35		10:35	9
Pacific Hwy opp Macquarie St, Belmont	-	07:32	+1	08:34	H	09:38	-	10:38	5
Pacific Hwy opp Marks Point Rd, Marks Point	-	07:36	-	08:39	-	09:43		10:43	9
Bowman St opp Lake Rd, Swansea	-	07:42	-	08:45	2	09:49	-	10:49	
Park Ave opp Swansea High School, Caves Beach	-	07:46	-	08:49	-	09:53	20	10:53	
Lambton Pde at Hamilton St, Swansea Heads	-	07:53	-	08:56	-	10:00		11:00	
Sunday & Public Holidays	B.	ė.			147				T. I
Customs House, Watt St, Newcastle	10:40	11:10	الح 11:40	12:10	12.40	12.10	12.40	4440	6
Darby St before Bull St, Cooks Hill	10:46	11:16			12:40	13:10	13:40	14:10	14:40
Junction Fair, Glebe Rd, The Junction	10:52		11:46	12:16	12:46	13:16	13:46	14:16	14:46
Glebe Rd opp Adamstown Uniting Church,		11:22	11:52	12:22	12:52	13:22	13:52	14:22	14:52
Adamstown	11:00	11:30	12:00	12:30	13:00	13:30	14:00	14:30	15:00
Westfield Kotara, Park Ave, Kotara	11.05	44.25	12.05	40.05	12.05				
Charlestown Square, Pearson St, Stand B,	11:05	11:35	12:05	12:35	13:05		14:05	14:35	15:05
Charlestown	11:15	11:45	12:15	12:44	13:15	13:44	14:15	14:44	15:15
	44.46								
Charlestown Square, Frederick St, Stand D,	11:16	11:46	12:16	12:46	13:16	13:46	14:16	14:46	15:16
Charlestown	44.5-		14-55						
Pacific Hwy after Oxford St, Gateshead	11:22	T	12:22	4	13:22	-	14:22	-	15:22
			17.70	-	13:29	+	14:29	-	15:29
Jewells Plaza, Ntaba Rd, Jewells	11:29		12:29						
Pacific Hwy at Cobbin Pde, Belmont	11:35	*	12:35	-	13:35	4	14:35	-	15:35
Pacific Hwy at Cobbin Pde, Belmont Pacific Hwy opp Macquarie St, Belmont	11:35 11:38		12:35 12:38			4	14:35 14:38	2	15:35 15:38
Pacific Hwy at Cobbin Pde, Belmont Pacific Hwy opp Macquarie St, Belmont Pacific Hwy opp Marks Point Rd, Marks Point	11:35 11:38 11:43	*	12:35	-	13:35				15:38
Pacific Hwy at Cobbin Pde, Belmont Pacific Hwy opp Macquarie St, Belmont Pacific Hwy opp Marks Point Rd, Marks Point Bowman St opp Lake Rd, Swansea	11:35 11:38 11:43 11:49	- 1	12:35 12:38	-	13:35 13:38	-	14:38	-	15:38 15:43
Pacific Hwy at Cobbin Pde, Belmont Pacific Hwy opp Macquarie St, Belmont Pacific Hwy opp Marks Point Rd, Marks Point	11:35 11:38 11:43		12:35 12:38 12:43		13:35 13:38 13:43		14:38 14:43	-	15:38

Sunday & Public Holidays	હ	6.	[b]	Ł.	Ł	ક	E	E.	E.
Customs House, Watt St, Newcastle	15:10	15:40	16:10	16:40	17:10	17:40	18:10	18:40	19:10
Darby St before Bull St, Cooks Hill	15:16	15:46	16:16	16:46	17:16	17:46	18:16	18:46	19:16
Junction Fair, Glebe Rd, The Junction	15:22	15:52	16:22	16:52	17:22	17:52	18:22	18:52	19:22
Glebe Rd opp Adamstown Uniting Church,	15:30	16:00	16:30	16:59	17:29	17:59	18:29	18:58	19:28
Adamstown						45,4212			
Westfield Kotara, Park Ave, Kotara	15:35	16:05	16:35	17:04	17:34	18:04	18:34	19:03	19:33
Charlestown Square, Pearson St, Stand B,	15:44	16:15	16:44	17:13	17:42	18:13	18:42	19:11	19:41
Charlestown								13.11	13.11
Charlestown Square, Frederick St, Stand D,	15:46	16:16	16:46	17:14	17:44	18:14	18:44	19:12	19:42
Charlestown									15117
Pacific Hwy after Oxford St, Gateshead	-	16:22	-	17:20	-	18:19	-2	19:17	1.4
Jewells Plaza, Ntaba Rd, Jewells	-	16:29	-	17:26	-	18:25	-	19:23	-
Pacific Hwy at Cobbin Pde, Belmont	-	16:35	-	17:32	4	18:30	-	19:28	-
Pacific Hwy opp Macquarie St, Belmont	-	16:38	-	17:35	-	18:33		19:31	-
Pacific Hwy opp Marks Point Rd, Marks Point	-	16:43	-	17:40	-	18:37	2	19:35	2.
Bowman St opp Lake Rd, Swansea	-	16:49	-	17:46	7	18:43	14	19:40	12.
Park Ave opp Swansea High School, Caves Beach	9	16:53	-	17:50	19	18:47	÷	19:44	12.
Lambton Pde at Hamilton St, Swansea Heads	-	17:00	-	17:57	1 = 1	18:53	÷	19:50	- 2
Sunday & Public Holidays	ક	&	长	6	Z-1- 1-1			V-17 - 17 - 1	
Customs House, Watt St, Newcastle	19:40	20:40	21:40	22:40					
Darby St before Bull St, Cooks Hill	19:46	20:46	21:46	22:46					
Junction Fair, Glebe Rd, The Junction	19:52	20:52	21:52	22:52					
Glebe Rd opp Adamstown Uniting Church,	19:58	20:58		22:58					
Adamstown	3.7.7.7.		- 1.5-						
Westfield Kotara, Park Ave, Kotara	20:03	21:03	22:03	23:03					
Charlestown Square, Pearson St, Stand B,		21:10		23:10					
Charlestown		- 11.1.4		20.10					
Charlestown Square, Frederick St, Stand D,	20:13	21:11	22:11	23:11					
Charlestown									
Pacific Hwy after Oxford St, Gateshead	20:17	21:17	22:17	23:17					
Jewells Plaza, Ntaba Rd, Jewells	20:23	21:23	22:23	23:23					
Pacific Hwy at Cobbin Pde, Belmont	20:28	21:28	22:28	23:28					
Pacific Hwy opp Macquarie St, Belmont	20:31	21:31	22:31	23:31					
Pacific Hwy opp Marks Point Rd, Marks Point	20:35	_	_						
Bowman St opp Lake Rd, Swansea	20:40	-	_	_					
Park Ave opp Swansea High School, Caves Beach	20:44	0-0		-					
Lambton Pde at Hamilton St, Swansea Heads	20:50	-	-						
Alick St opp Spinnakers Leisure Park, Belmont									

Monday to Friday	<u>&</u>	b.	E.	Ł.	ል	Ł	6	6	E
Lambton Pde at Hamilton St, Swansea Heads	05:03	05:33	+	06:29		06:45	-	-	07:18
Swansea High School, Park Ave, Caves Beach	05:09			06:35		06:52	14	y	07:15
Pacific Hwy after Lake Rd, Swansea	05:13	05:43	+	06:39		06:56	-	(-)	07:30
Pacific Hwy at Marks Point Rd, Marks Point	05:19	05:49	-	06:45		07:02	_	-	07:36
Alick St opp Spinnakers Leisure Park, Belmont	-	-	06:17	=	÷	-		-	-
Pacific Hwy before Macquarie St, Belmont	05:22	05:52	06:20	06:49		07:06	100	77	07:41
Ntaba Rd opp Jewells Plaza, Jewells	05:31	06:01	06:31	07:00	-	07:18	4	1-	07:55
Pacific Hwy at Oxford St, Gateshead	05:38	06:08	06:38	07:07	- 4	07:27		-	08:06
Charlestown Square, Frederick St, Stand C,	05:40	06:10	06:41	07:11	07:21	07:31	07:41	07:56	
Charlestown									
Charlestown Square, Pearson St, Stand A,	05:41	06:11	06:42	07:12	07:22	07:32	07:42	07:57	08:11
Charlestown									
Park Ave opp Westfield Kotara, Kotara	05:51	06:21	06:52	07:22	07:32	07:44	07:53	08:08	08:25
Adamstown Community Early Learning, Glebe	05:56	06:26	06:57	07:28	07:38	07:50	07:59	08:14	08:32
Rd, Adamstown									
Junction Fair, Glebe Rd, The Junction	06:02	06:32	07:04	07:36	07:46	07:58	08:07	08:22	08:43
Darby St at Bull St, Cooks Hill	06:07	06:37	07:09	07:41	07:51	08:03	08:12	08:27	08:48
Customs House, Watt St, Newcastle	06:14	06:44	07:18	07:50	08:00	08:13	08:22	08:37	08:57
Monday to Friday	<u>k</u>	E.	<u>ل</u> ح	ර්	E.	E.	<u></u> &.	6	<u>ل</u> ا
Lambton Pde at Hamilton St, Swansea Heads	-	-	07:58	-	08:28	-	08:59	-	-
Swansea High School, Park Ave, Caves Beach		=	08:05	10.8	08:35	9	09:06	(8)	-
Pacific Hwy after Lake Rd, Swansea		-	08:10	-	08:40	9	09:10	-	
Pacific Hwy at Marks Point Rd, Marks Point	12.	-	08:16		08:46	4.5	09:16	-	12
Alick St opp Spinnakers Leisure Park, Belmont	-	-	-	9-	-	-	-	-	09:47
Pacific Hwy before Macquarie St, Belmont	-		08:21	0 -	08:51	5	09:21	1.2	09:51
Ntaba Rd opp Jewells Plaza, Jewells	÷	1	08:34	-	09:03	9	09:33	1.2	10:03
Pacific Hwy at Oxford St, Gateshead		<u> </u>	08:44		09:13		09:41		10:11
Charlestown Square, Frederick St, Stand C,	08:23	08:36	08:48	09:04	09:17	09:30	09:45	10:00	10:15
Charlestown									
Charlestown Square, Pearson St, Stand A,	08:23	08:37	08:49	09:05	09:18	09:31	09:46	10:01	10:16
Charlestown									
Park Ave opp Westfield Kotara, Kotara	08:33	08:48	09:01	09:17	09:30	09:42	09:57	10:12	10:27
Adamstown Community Early Learning, Glebe	08:42	08:55	09:08	09:23	09:36	09:48	10:03	10:18	10:33
Rd, Adamstown									
Junction Fair, Glebe Rd, The Junction	08:54	09:05	09:18	09:31	09:44	09:56	10:11	10:26	10:41
Darby St at Bull St, Cooks Hill	08:59	09:10	09:23	09:36	09:49	10:01	10:16	10:31	10:46
Customs House, Watt St, Newcastle	09:09	09:19	09:32	09:44	09:57	10:09	10:24	10:39	10:54
Monday to Friday	E	6.	(A)	₽.	Ł.	E.	6	6	[£]
Lambton Pde at Hamilton St, Swansea Heads	-	09:59	-	-	-	10:59	-	-	-
Swansea High School, Park Ave, Caves Beach		10:06	10-	-	-	11:06	-	-	-
Pacific Hwy after Lake Rd, Swansea	-	10:10	1 ÷	-	-	11:10		1-0	4
Pacific Hwy at Marks Point Rd, Marks Point	16	10:16	11.6.1	-	-	11:16	-	1-	-
Alick St opp Spinnakers Leisure Park, Belmont	-	-	-	10:47	-	_	-	11:47	-
Pacific Hwy before Macquarie St, Belmont		10:21	191	10:51	-	11:21	-	11:51	-
Ntaba Rd opp Jewells Plaza, Jewells	-	10:33	=	11:03	-	11:33	-	12:03	-
Pacific Hwy at Oxford St, Gateshead	-	10:41	-	11:11	-	11:41	-	12:11	-
Charlestown Square, Frederick St, Stand C,	10:30	10:44	11:00	11:15	11:30	11:45	12:00		12:30
Charlestown								1	30.75
Charlestown Square, Pearson St, Stand A,	10:31	10:45	11:01	11:16	11:31	11:46	12:01	12:16	12:31
Charlestown Park Ave ann Westfield Ketara Ketara	10.10	40 ==	12.25				DE TOTAL		
Park Ave opp Westfield Kotara, Kotara	10:43	10:57	11:13	11:27	11:43	11:57	12:13	12:27	12:43
Adamstown Community Early Learning, Glebe	10:48	11:03	11:18	11:33	11:48	12:03	12:18	12:33	12:48
Rd, Adamstown	40.55	44.55		77.5 60	120 20		- D. S. F2-		
Junction Fair, Glebe Rd, The Junction		11:11	11:26	11:41	11:56	12:11	12:26	12:41	12:56
Darby St at Bull St, Cooks Hill Customs House, Watt St, Newcastle	11:01 11:09	11:16 11:24	11:31	11:46 11:54	12:01 12:09	12:16 12:24	12:31 12:39	12:46	13:01
								12:54	13:09

Monday to Friday	[£]	b.	6	Ġ.	Ł.	(ક.	Ł	6.	હ
Lambton Pde at Hamilton St, Swansea Heads	11:59		-	-	12:59	[0.]	[C ₁]	[6.]	13:59
Swansea High School, Park Ave, Caves Beach	12:06		4	-	13:06	-	_		14:06
Pacific Hwy after Lake Rd, Swansea	12:10		-	-	13:10	-			14:10
Pacific Hwy at Marks Point Rd, Marks Point	12:16		-	-	13:16	-	_	_	14:16
Alick St opp Spinnakers Leisure Park, Belmont		-	12:47	2	-	-	13:47		14.10
Pacific Hwy before Macquarie St, Belmont	12:21	-	12:51		13:21		13:51	_	14:21
Ntaba Rd opp Jewells Plaza, Jewells	12:33	-	13:03	-	13:33	-	14:03	1=	14:33
Pacific Hwy at Oxford St, Gateshead	12:41	- 4	13:11) — ·	13:41	-	14:11	_	14:41
Charlestown Square, Frederick St, Stand C,	12:45	13:00	13:15	13:30	13:45	14:00	14:15	14:30	14:45
Charlestown			, , -	15.50	13.13	14.00	14.15	14.50	14.43
Charlestown Square, Pearson St, Stand A,	12:46	13:01	13:16	13:31	13:46	14:01	14:16	14:31	14:46
Charlestown			62762	-0.505-0	10110		11.10	14.51	14.40
Park Ave opp Westfield Kotara, Kotara	12:57	13:13	13:27	13:43	13:57	14:13	14:27	14:43	14:57
Adamstown Community Early Learning, Glebe	13:03	13:18	13:33	13:48	14:03	14:18	14:33	14:48	15:03
Rd, Adamstown			. dia a	15.05		11.10	1 1.55	14.40	13.03
Junction Fair, Glebe Rd, The Junction	13:11	13:26	13:41	13:56	14:11	14:26	14:41	14:56	15:11
Darby St at Bull St, Cooks Hill	13:16	13:31	13:46	14:01	14:16	14:31	14:46	15:01	15:16
Customs House, Watt St, Newcastle	13:24	13:39	13:54		14:24	14:39			15:24
Monday to Friday	Ł	Ł.							
Lambton Pde at Hamilton St, Swansea Heads	<u>(C.</u>	[6.]	14:40	6	Ł.	6	b	6	હ
Swansea High School, Park Ave, Caves Beach	1/2	- 6			7	-	=	15:55	
Pacific Hwy after Lake Rd, Swansea			14:47		-			16:02	-
Pacific Hwy at Marks Point Rd, Marks Point	_	18	14:51 14:57		-	-3	-	16:07	10
Alick St opp Spinnakers Leisure Park, Belmont	14:30	- 2	14.57	- 5		15.40		16:14	
Pacific Hwy before Macquarie St, Belmont	14:34	-	15:02		7	15:42	-	-	16:33
Ntaba Rd opp Jewells Plaza, Jewells	14:48		15:15			15:46		16:20	16:37
Pacific Hwy at Oxford St, Gateshead	14:56	-	15:26			16:00	~	16:32	16:48
Charlestown Square, Frederick St, Stand C,	15:00	15:15	15:29	15:45	16:00	16:10	16.20	16:41	16:56
Charlestown	13.00	13.13	13.29	13.43	16.00	16:14	16:30	16:45	16:59
Charlestown Square, Pearson St, Stand A,	15:01	15:16	15:30	15:46	16:01	16:15	16:31	16:46	17.00
Charlestown	13.01	13.10	13.50	13.40	10.01	10.15	10.51	10.46	17:00
Park Ave opp Westfield Kotara, Kotara	15:12	15:28	15:42	15:57	16:12	16:27	16:41	16,57	17.11
Adamstown Community Early Learning, Glebe	15:18	15:33	15:48	16:03	16:18	16:33	16:48	16:57 17:03	17:11
Rd, Adamstown	,5,,,	13.33	13.40	10.05	10.10	10.55	10.40	17.03	17:18
Junction Fair, Glebe Rd, The Junction	15:26	15:42	15:57	16:12	16:27	16:42	16:56	17:11	17:26
Darby St at Bull St, Cooks Hill	15:31	15:47	16:02	16:17	16:32	16:47	17:01	17:16	17:20
Customs House, Watt St, Newcastle	15:39	15:55	16:10	16:25	16:40	16:55	17:09	17:10	17:31
Monday to Friday	Ł	ઢ	<u>6</u>	Ł	હ	હિ	હ	હ	<u></u>
Lambton Pde at Hamilton St, Swansea Heads	-	-	16:59	-	17:30	-	18:00	8	18:33
Swansea High School, Park Ave, Caves Beach Pacific Hwy after Lake Rd, Swansea		-	17:05		17:36	-	18:06		18:39
Pacific Hwy at Marks Point Rd, Marks Point		4.5	17:10	-	17:40	-	18:10	9	18:43
Alick St opp Spinnakers Leisure Park, Belmont	1.7		17:16	4	17:46		18:16	-	18:48
Pacific Hwy before Macquarie St, Belmont	9	-	17.24	17:32	47.51	-	-	~	-
Ntaba Rd opp Jewells Plaza, Jewells	- 8	- 7	17:21	17:36	17:51	-	18:21	~	18:52
Pacific Hwy at Oxford St, Gateshead			17:33	17:48	18:02	-	18:32	-	19:02
Charlestown Square, Frederick St, Stand C,	17.15		17:41	17:56	18:09	40.00	18:39		19:09
Charlestown Square, Frederick St, Stand C,	17:15	17:30	17:44	17:59	18:13	18:28	18:42	18:58	19:12
Charlestown Square, Pearson St, Stand A,	17.10	17.21	17.45	10.00	4044	40.00			
Charlestown Square, Fearson St, Stand A,	17:16	17:31	17:45	18:00	18:14	18:29	18:43	18:58	19:13
Park Ave opp Westfield Kotara, Kotara	17.26	17.44	17.50	10.13	10 21	10.55	40.5	4 - 2 -	
Adamstown Community Early Learning, Glebe	17:26	17:41	17:56	18:13	18:24	18:39	18:54	19:08	19:22
Rd, Adamstown	17:33	17:46	18:03	18:19	18:29	18:44	18:59	19:12	19:26
Junction Fair, Glebe Rd, The Junction	17.44	17.53	10.14	10.22	10	10 ==	4.2.2		
Darby St at Bull St, Cooks Hill	17:41	17:53	18:11	18:28	18:35	18:50	19:05	19:18	19:32
Customs House, Watt St, Newcastle	17:46	17:58	18:16	18:33	18:40	18:55	19:10	19:23	19:37
	17:54	18:05	18:24	18:40	18:47	19:02	19:17	19:30	19:44

Monday to Friday	E	Ė.	(£.	F	હ	6	હ	E.	
Lambton Pde at Hamilton St, Swansea Heads	19:01		20:01	-	20:56	-	-	-	
Swansea High School, Park Ave, Caves Beach	19:07	-	20:07	-	21:02	-	-		
Pacific Hwy after Lake Rd, Swansea	19:11	-	20:11	-	21:06	-	-	-	
Pacific Hwy at Marks Point Rd, Marks Point	19:16		20:16	*	21:11	-	-	-	
Alick St opp Spinnakers Leisure Park, Belmont		-	-	+	= 1	-	22:12	23:12	
Pacific Hwy before Macquarie St, Belmont	19:20	-	20:20		21:15		22:15	23:15	
Ntaba Rd opp Jewells Plaza, Jewells	19:30	9	20:29		21:24	-	22:24	23:24	
Pacific Hwy at Oxford St, Gateshead	19:37	-	20:35	-	21:30	-	22:30	23:30	
Charlestown Square, Frederick St, Stand C, Charlestown	19:40	20:11	20:38	21:09	21:33	22:04	22:33	23:33	
Charlestown Square, Pearson St, Stand A, Charlestown	19:41	20:11	20:39	21:09	21:34	22:04	22:34	23:34	
Park Ave opp Westfield Kotara, Kotara	19:50	20:19	20:47	21.17	21:42	22:12	22.42	23:42	
Adamstown Community Early Learning, Glebe Rd, Adamstown		20:23		21:21				23:46	
Junction Fair, Glebe Rd, The Junction	20:00	20:28	20:56	21.26	21.51	22.21	22.51	22.54	
Darby St at Bull St, Cooks Hill	20:05	20:28	21:01	21:26 21:31	21:51 21:56	22:21 22:26	22:51 22:56	23:51	
Customs House, Watt St, Newcastle	the second contract of the second contract of	20:40		21:38		22:33	23:03	23:56 00:03	
Saturday	ا	<u>a</u>	E	<u>b</u>	E.	Ł.	6	E.	Ł
Lambton Pde at Hamilton St, Swansea Heads		06:33	-	07:29	-	08:26	-	09:24	_
Swansea High School, Park Ave, Caves Beach	-	06:39	-	07:35	14	08:33	.9	09:31	
Pacific Hwy after Lake Rd, Swansea	-	06:43	3	07:39	-	08:38	-	09:37	74
Pacific Hwy at Marks Point Rd, Marks Point	=	06:48		07:45		08:44	9	09:44	
Alick St opp Spinnakers Leisure Park, Belmont	05:50	-	07:17	-	08:15	_	09:15	-	10:15
Pacific Hwy before Macquarie St, Belmont	05:53	06:53	07:20	07:50	08:19	08:49	09:19	09:49	10:19
Ntaba Rd opp Jewells Plaza, Jewells	06:02	07:02	07:31	08:01	08:30	09:00	09:30	10:00	10:30
Pacific Hwy at Oxford St, Gateshead	06:09	07:09	07:38	08:08	08:38	09:08	09:38	10:08	10:38
Charlestown Square, Frederick St, Stand C, Charlestown	06:11	07:11	07:41	08:11	08:41	09:12		10:12	10:32
Charlestown Square, Pearson St, Stand A, Charlestown	06:12	07:12	07:42	08:12	08:42	09:13	09:43	10:13	10:43
Park Ave opp Westfield Kotara, Kotara	06:21	07:21	07:51	00.22	00.50	00.24	00.54	10.21	40 = 4
Adamstown Community Early Learning, Glebe	06:26	07:21	07:56	08:22 08:27	08:52 08:57	09:24 09:29	09:54 09:59	10:24 10:29	10:54 10:59
Rd, Adamstown	- 66 65								
Junction Fair, Glebe Rd, The Junction	06:32	07:32	08:02	08:34	09:05	09:37	10:07	10:37	11:07
Darby St at Bull St, Cooks Hill	06:36	07:36	08:06	08:38	09:09	09:41	10:11	10:41	11:11
Customs House, Watt St, Newcastle	06:43	07:43	08:13	08:47	09:18	09:50	10:20	10:50	11:20
Saturday	(Ł	હ	E.	ક	Ł.	Ł.	હ	6	ક
Lambton Pde at Hamilton St, Swansea Heads	10:24	75	11:26	-	12:26	-	13:26	-	14:26
Swansea High School, Park Ave, Caves Beach	10:31	=	11:33	-	12:33	-	13:33	-	14:33
Pacific Hwy after Lake Rd, Swansea	10:37	-	11:38	4	12:38	-	13:38		14:38
Pacific Hwy at Marks Point Rd, Marks Point	10:44	-	11:44	14	12:44		13:44	-	14:44
Alick St opp Spinnakers Leisure Park, Belmont	-	11:15	-	12:15	-	13:15	-	14:15	-
Pacific Hwy before Macquarie St, Belmont	10:49	11:19	11:49	12:19	12:49	13:19	13:49	14:19	14:49
Ntaba Rd opp Jewells Plaza, Jewells	11:00	11:30	12:00	12:30	13:00	13:30	14:00	14:30	15:00
Pacific Hwy at Oxford St, Gateshead	11:08	11:38	12:08	12:38	13:08	13:38	14:08	14:38	15:08
Charlestown Square, Frederick St, Stand C,	11:12	11:42	12:12	12:42		13:42			
Charlestown	11.12	11,42	12.12	12.42	13.12	13.42	14:12	14:42	15:12
Charlestown Square, Pearson St, Stand A, Charlestown	11:13	11:43	12:13	12:43	13:13	13:43	14:13	14:43	15:13
Park Ave opp Westfield Kotara, Kotara	11:24	11:54	12.24	12.54	12.24	12.54	14.24	1451	4= -
Adamstown Community Early Learning, Glebe			12:24		13:24		14:24		15:24
	11:29	11:59	12:29	12:59	13:29	13:59	14:29	14:59	15:29
Rd, Adamstown	44.27	42.07	44.44	12 10		110000			
Junction Fair, Glebe Rd, The Junction	11:37	12:07	12:37	13:07	13:37	14:07	14:37	15:07	15:37
Darby St at Bull St, Cooks Hill	11:41	12:11	12:41	13:11	13:41	14:11	14:41	15:11	15:41
Customs House, Watt St, Newcastle	11:50	12:20	12:50	13:20	13:50	14:20	14:50	15:20	15:50

Saturday	6	<u>[</u> 6.]	E.	Ł.	Ė.	Ł.	ક	હિ	E
Lambton Pde at Hamilton St, Swansea Heads	-	15:26		16:26		17:27	- [0-]	18:31	[G.]
Swansea High School, Park Ave, Caves Beach	-	15:33		16:33		17:34		18:37	
Pacific Hwy after Lake Rd, Swansea	-	15:38		16:38		17:39		18:42	1 2
Pacific Hwy at Marks Point Rd, Marks Point	100	15:44		16:44		17:45	-	18:47	
Alick St opp Spinnakers Leisure Park, Belmont	15:15	-	16:15		17:16	-	18:18	-	19:18
Pacific Hwy before Macquarie St, Belmont	15:19	15:49	16:19		17:20	17:50	18:22	18:52	19:22
Ntaba Rd opp Jewells Plaza, Jewells	15:30	16:00			17:30	18:00	18:31	19:01	19:31
Pacific Hwy at Oxford St, Gateshead	15:38	16:08				18:08	18:38	19:08	19:38
Charlestown Square, Frederick St, Stand C,	15:42	16:12				18:11	18:41	19:11	19:41
Charlestown									13.11
Charlestown Square, Pearson St, Stand A,	15:43	16:13	16:43	17:13	17:43	18:12	18:42	19:12	19:42
Charlestown									15112
Park Ave opp Westfield Kotara, Kotara	15:54	16:24	16:54	17:24	17:54	18:23	18:53	19:23	19:53
Adamstown Community Early Learning, Glebe	15:59	16:29	16:59	17:29	17:59	18:28	18:58	19:28	19:58
Rd, Adamstown							10177	12.22	,,,,,,
Junction Fair, Glebe Rd, The Junction	16:07	16:37	17:07	17:37	18:07	18:36	19:05	19:35	20:05
Darby St at Bull St, Cooks Hill	16:11	16:41	17:11	17:41	18:11	18:40	19:09	19:39	20:09
Customs House, Watt St, Newcastle	16:20	16:50	17:20	17:50	18:19	18:48	19:16		20:16
Saturday	<u>ل</u>	6.	6	ક	Ł.				
Lambton Pde at Hamilton St, Swansea Heads	19:31	20:31			-				
Swansea High School, Park Ave, Caves Beach	19:37	20:37	-	9	-				
Pacific Hwy after Lake Rd, Swansea	19:42	20:42	-	-	OB.				
Pacific Hwy at Marks Point Rd, Marks Point	19:47	20:47	-		-				
Alick St opp Spinnakers Leisure Park, Belmont	-	-	21:48	22:48	23:48				
Pacific Hwy before Macquarie St, Belmont	19:52	20:52	21:52	22:52	23:52				
Ntaba Rd opp Jewells Plaza, Jewells	20:01	21:01	22:01	23:01	00:01				
Pacific Hwy at Oxford St, Gateshead	20:08	21:08	22:08	23:08	00:08				
Charlestown Square, Frederick St, Stand C,	20:11	21:11	22:11		00:11				
Charlestown					GWAN A				
Charlestown Square, Pearson St, Stand A,	20:12	21:12	22:12	23:12	00:12				
Charlestown									
Park Ave opp Westfield Kotara, Kotara	20:23	21:23	22:22	23:22	00:22				
Adamstown Community Early Learning, Glebe	20:28	21:28	22:27	23:27	00:27				
Rd, Adamstown									
Junction Fair, Glebe Rd, The Junction	20:35	21:35	22:33	23:33	00:33				
Darby St at Bull St, Cooks Hill	20:39	21:39	22:37	23:37	00:37				
Customs House, Watt St, Newcastle	20:46	21:46	22:44	23:44	00:44				
Sunday & Public Holidays	b	E.	Ġ.	ક	Ł	E.	<u>&</u>	ا	હ
Lambton Pde at Hamilton St, Swansea Heads	+	07:29	-	08:26	-	09:24	-	10:24	- Cr
Swansea High School, Park Ave, Caves Beach	-	07:35	_	08:33	-	09:31	-	10:31	
Pacific Hwy after Lake Rd, Swansea	-	07:39	-	08:38	- 4	09:37	-	10:37	2
Pacific Hwy at Marks Point Rd, Marks Point	-	07:45	-	08:44	-	09:44	÷.	10:44	2
Alick St opp Spinnakers Leisure Park, Belmont	06:50	_	-	_	-	-		-	4
Pacific Hwy before Macquarie St, Belmont	06:53	07:50	2	08:49	1.1	09:49		10:49	4.
Ntaba Rd opp Jewells Plaza, Jewells	07:02	08:01	-	09:00	(-)	10:00	-	11:00	
Pacific Hwy at Oxford St, Gateshead	07:09	80:80	=	09:08	21	10:08		11:08	2
Charlestown Square, Frederick St, Stand C,	07:11	08:11	08:42	09:12	09:42	10:12	10:42	11:12	11:42
Charlestown		CALCO III II				. 5.12	10.72	11.12	11.72
Charlestown Square, Pearson St, Stand A,	07:12	08:12	08:43	09:13	09:43	10:13	10:43	11:13	11:43
Charlestown									. 1.73
Park Ave opp Westfield Kotara, Kotara	07:21	08:22	08:53	09:24	09:53	10:24	10:53	11:24	11:53
Adamstown Community Early Learning, Glebe	07:26	08:27	08:57	09:29	09:59	10:29	10:59	11:29	11:59
Rd, Adamstown			77.77	7.7.5			. 0.00	11.23	11.55
Junction Fair, Glebe Rd, The Junction	07:32	08:34	09:05	09:37	10:07	10:37	11:07	11:37	12:07
Darby St at Bull St, Cooks Hill	07:36	08:39	09:09	09:41	10:11	10:41	11:11	11:41	12:11
Customs House, Watt St, Newcastle	07:43	08:47	09:18	09:50	10:20	10:50	11:20	11:50	12:20
				-5,50	. 5.20	10.50	11.20	11.50	12.20

14

Sunday & Public Holidays	E.	b	E.	<u>ا</u>	ક	E.	ė.	<u> </u> &	[2]
Lambton Pde at Hamilton St, Swansea Heads	11:26		12:26	-	13:26	- -	14:26		ક 15:26
Swansea High School, Park Ave, Caves Beach	11:33		12:33	-	13:33		14:33	-	
Pacific Hwy after Lake Rd, Swansea	11:38	-	12:38	-	13:38		14:38		15:33
Pacific Hwy at Marks Point Rd, Marks Point	11:44		12:44	2	13:44	4			15:38
Pacific Hwy before Macquarie St, Belmont	11:50	-	12:50	-	13:49		14:44		15:44
Ntaba Rd opp Jewells Plaza, Jewells	12:00	i ai	13:00		14:00		14:49		15:49
Pacific Hwy at Oxford St, Gateshead	12:08	-	13:08	- 10-11	14:08	-	15:00	-	16:00
Charlestown Square, Frederick St, Stand C,	12:12	12:42			14:12		15:08	15.45	16:08
Charlestown	12.12	12.72	13.12	13.42	14.12	14.42	15:12	15:42	16:12
Charlestown Square, Pearson St, Stand A,	12:13	12:43	13:13	13:43	14:13	14:43	15:13	15:43	16.13
Charlestown	1-11-5		13.13	13.43	14.15	14.45	13.13	13.43	16:13
Park Ave opp Westfield Kotara, Kotara	12:24	12:53	13:24	13:53	14:24	14:53	15:24	15:53	16:24
Adamstown Community Early Learning, Glebe	12:29	12:59		13:59	14:29	14:59		15:59	16:29
Rd, Adamstown							15055	15.55	10.23
Junction Fair, Glebe Rd, The Junction	12:37	13:07	13:37	14:07	14:37	15:07	15:37	16:07	16:37
Darby St at Bull St, Cooks Hill	12:41	13:11	13:41	14:11	14:41	15:11	15:41	16:11	16:41
Customs House, Watt St, Newcastle	12:50	13:20	13:50	14:20	14:50	15:20		16:20	16:50
Sunday & Public Holidays	E.	Ł.	b.	<u></u> &.	Ł.	E.	Ł	الح.	<u>E</u>
Lambton Pde at Hamilton St, Swansea Heads	-	16:26	-	17:27	-	18:31		19:31	20:31
Swansea High School, Park Ave, Caves Beach	-	16:33	100	17:34	-	18:37	- 6	19:37	20:37
Pacific Hwy after Lake Rd, Swansea	-	16:38	-	17:39	-	18:42	-	19:42	
Pacific Hwy at Marks Point Rd, Marks Point	9	16:44	-	17:45	_	18:47		19:42	20:42
Pacific Hwy before Macquarie St, Belmont	-	16:49	-	17:50	-	18:52			20:47
Ntaba Rd opp Jewells Plaza, Jewells		17:00	-	18:00	-	19:01	1=0	19:52 20:01	20:52
Pacific Hwy at Oxford St, Gateshead	-	17:08	-	18:08	-	19:08		20:08	21:01 21:08
Charlestown Square, Frederick St, Stand C,	16:42	17:12	17:42	18:11	18:42	19:11	19:42	20:08	21:08
Charlestown	, , , , _		17.12	10.11	10.42	13.11	13.42	20.11	21.11
Charlestown Square, Pearson St, Stand A,	16:43	17:13	17:43	18:12	18:43	19:12	19:42	20:12	21:12
Charlestown							1,1,1,1,1		
Park Ave opp Westfield Kotara, Kotara	16:53	17:24	17:53	18:23	18:53	19:22	19:52	20:22	21:22
Adamstown Community Early Learning, Glebe	16:59	17:29	17:59	18:28	18:58	19:27	19:57	20:27	21:27
Rd, Adamstown									-11-
Junction Fair, Glebe Rd, The Junction	17:07	17:37	18:07	18:35	19:05	19:34	20:04	20:34	21:34
Darby St at Bull St, Cooks Hill	17:11	17:41	18:11	18:39	19:09	19:38	20:08	20:38	21:38
Customs House, Watt St, Newcastle	17:20	17:50	18:19	18:47	19:16	19:45	20:15	20:45	21:45
Sunday & Public Holidays	હ	<u>6</u>	6						
Alick St opp Spinnakers Leisure Park, Belmont		22:48							
Pacific Hwy before Macquarie St, Belmont		22:52							
Ntaba Rd opp Jewells Plaza, Jewells	22:01	23:01	00:01						
Pacific Hwy at Oxford St, Gateshead	22:08	23:08	00:08						
Charlestown Square, Frederick St, Stand C,	22:11	23:11	00:11						
Charlestown			5,500,0						
Charlestown Square, Pearson St, Stand A,	22:12	23:12	00:12						
Charlestown									
Park Ave opp Westfield Kotara, Kotara	22:22	23:22							
Adamstown Community Early Learning, Glebe	22:27	23:27	00:27						
Rd, Adamstown									
Junction Fair, Glebe Rd, The Junction	22:33		00:33						
Darby St at Bull St, Cooks Hill	22:37	23:37	00:37						
Customs House, Watt St, Newcastle	22:44	23:44	00:44						

Transport and Traffic Planning Associates

Appendix F

Turning Path Assessment

Attachment 4: Mine Subsidence Risk study

Douglas Partners Geotechnics | Environment | Groundwater

Report on Desktop Study - Mine Subsidence Risk

Lake Macquarie Private Hospital Expansion O'Brien Street, Gateshead

> Prepared for Akalan Projects Pty Ltd

> > Project 16471.21 October 2016

Document History

Document details

Project No.	16471.21	Document No.	R.001.Rev0	
Document title	Report on Desk	top Study - Mine Subside	ence Risk	
	Lake Macquarie	Private Hospital Expans	ion	
Site address	O'Brien Street,	Gateshead		
Report prepared for	Akalan Projects	Pty Ltd		
File name	16471.21.R.001	.Rev0		

Document status and review

Status	Prepared by	Reviewed by	Date issued	
Revision 0	Julie Wharton	Will Wright	25 October 2016	

Distribution of copies

Status	Electronic	Paper	Issued to	
Revision 0	1	0	Mr Hector Pedrol, Mr James Pearce Akalan Projects Pty Ltd	

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

Signature	Date
Author	25 October 2016
Reviewer	25 October 2016

Table of Contents

		Pa	age
1.	Intro	duction	1
2.	Scop	e of Work	1
3.	Data	Review	2
0.	3.1	Extent of Mining	
	3.2	Record Trace – Victoria Tunnel Seam	
	3.3	Historical Data	2
	3.4	Working Section and Seam Thickness	3
4.	Pillar	Stability Analysis	5
5.	Comi	ments	6
6.	Conc	clusions	7
7.	Refe	rences	7
8.	Limita	ations	8
Appe	ndix /	A:	
Abou	t this	Report	
Table	A.1	 Pillar Stability Analysis – Pillars as Measured / Working Section 2.4 m 	
Table	A.2	 Pillar Stability Analysis – Run 2 - Remove Crushed Pillars from Run 1 	
Table	A.3	– Pillar Stability Analysis – Run 3 - Decrease Run 2 Pillars by 1 m	
Table	A.4	 Pillar Stability Analysis – Run 4 - Run 2 Working Section Increased to 3.0 m 	
		 Pillar Stability Analysis – Run 5 - Decrease Run 2 Pillars by 1 m and Increasection to 3.0 m 	ase
Table of Dra		 Pillar Stability Analysis – Run 2A – Remove Low FoS Pillars from Beneath An 	gle
Draw	ing 1	- Site Location Plan	
Draw	ing 2	 Layout of Mine Workings (RT303A) and Pillar Numbering 	
Draw	ing 3	- Pillar Factor of Safety - Run 2	
Draw	ing 4	Pillar Factor of Safety – Run 3 (Pillars Decreased by 1 m)	
Draw	ing 5	 Pillar Factor of Safety – Run 4 (Working Section increased to 3.0 m) 	

Report on Desktop Study - Mine Subsidence Risk Lake Macquarie Private Hospital Expansion O'Brien Street, Gateshead

1. Introduction

This report presents the results of a desktop study to assess the mine subsidence risk for the proposed expansion of Lake Macquarie Private Hospital (LMPH) at O'Brien and Casey Streets, Gateshead (Lots 3 to 8, DP24268). The work was carried out for Akalan Projects Pty Ltd.

It is understood that the current proposed development comprises the construction of a single storey structure on Lot 3, DP24268 as part of a 20 bed ward extension. The development will require excavation of about 2 m depth along the northern boundary. The proposed finished basement floor level will be at about RL 42.0 (AHD). The lift well and stairs will be installed to floor level of about 37.0 AHD, to connect with existing hospital buildings to the south. Other future development on Lots 4 to 8 is not yet known.

A desktop study was undertaken to comment on the stability of the mine workings and also to provide comments on the likely surface subsidence parameters which would result from the 'worst credible case' future mine subsidence. No subsurface investigation was undertaken for the mine subsidence assessment.

Douglas Partners Pty Ltd (DP) has previously undertaken a desktop mine subsidence risk assessment of the Stage 2 LMPH Medical Suits at 8 Sydney Street, Gateshead (Ref 1). The results of the previous assessment were referred to in the preparation of this report.

The location of the site is shown on Drawing 1, attached. The area of the current proposed development (Lot 3) is located in the south-west corner of the site area shown on Drawing 1.

2. Scope of Work

The scope of work comprised:

- A review of the plans of the mine workings (called Record Traces or RTs) and the Department of Primary Industries – Minerals' (DPI-Minerals) online DIGS data base for relevant information;
- Review of other historical documents and data from DP files;
- Pillar stability analysis for pillars under the site and within and immediately surrounding the angle of draw;
- Comment on the pillar stability and the likelihood of mine subsidence affecting the site.

3. Data Review

3.1 Extent of Mining

Previous inquiries to the Mine Subsidence Board (MSB) indicates that the site has been undermined by abandoned mine workings in the Victoria Tunnel Seam (Ref 1).

The Victoria Tunnel workings were undertaken by BHP's Burwood Colliery at a depth of about 118 m to 124 m beneath the proposed floor level of 42.0 AHD in the area beneath the site.

Scanned images of the plans of these abandoned mines were obtained from the DPI – Minerals as part of the work for Ref 1. The images were georeferenced to the modern surface cadastre provided by the Department of Lands.

3.2 Record Trace – Victoria Tunnel Seam

The Victoria Tunnel Seam workings of the Burwood Colliery are recorded on Record Tracing (RT) 303A. The relationship between the workings and the site is shown on Drawing 2, attached. Reference to this drawing indicates that the workings comprised bord and pillar workings.

The nearest areas of partial and full pillar extraction are immediately west of the site. One row of full pillar extraction is located within the angle of draw for the site. Additional rows are located west of, and outside the angle of draw.

Dates on the RT near the site indicate that mining likely occurred in the late 1960s to early 1970s.

No sections showing the seam thickness or working section are shown on the RT.

Reference to the RT indicated a working floor elevation in the range of about 219' to 229'. The datum to which these elevations referred is 500' below "high water mark (ordinary spring tide), that is 5'6" above zero of Tide Gauge Newcastle". The Newcastle Harbour Tide Gauge datum (NHTG) is at an elevation of about -1.01 AHD. Therefore, the floor of the workings is estimated to be in the range of about RL -75.7 to RL -83.6 (AHD).

With reference to the proposed floor level of 42.0 AHD, it is therefore estimated that the floor of the workings is in the range of about 118 m to 126 m below the proposed finished floor level of the site.

3.3 Historical Data

Information previously obtained from the on Lake Macquarie City Council (LMCC) website (Ref 1) indicates that Burwood Colliery was owned by the Burwood Coal Co. and opened in 1885 at Glenrock. The first shaft at Whitebridge was sunk in 1888. In 1894 the Scottish Australian Mining Co. bought it for 27,000 pounds. The Glenrock entrance was closed and a new line was built for transport. There were five shafts at Whitebridge, working three seams: the Borehole, Victoria Tunnel and Dudley. The workings extended for a kilometre under the sea and as far as Gateshead, Charlestown and Merewether.

In 1932, Burwood Colliery was purchased by BHP. It closed in 1982.

3.4 Working Section and Seam Thickness

Limited data has been found on the working section thickness of the Victoria Tunnel Seam in the immediate vicinity of the site.

A previous review of data available on Department of Industry's online DIGS database (Ref 1) indicated the following:

Table 1: Summary of Available Colliery Bore Data (source: DIGS online database)

Colliery	Bore Number (date)	Approximate Distance of Bore from Site	Thickness of Victoria Tunnel Seam (m)	Thickness of Working Section of Victoria Tunnel Seam (m)
BHP Windale	DDH1 (1954)	750 m SW	2.41	Not indicated
Waratah	DDH4 (undated)	1.2 km NE	2.83	Not indicated
BHP Windale	DDH3 (1957)	1.4 km SSW	3.04	Not indicated
Waratah	DDH9 (1960)	1.5 km NW	3.20	1.40 ?
BHP Burwood Dudley	DDH2 (1955)	1.6 km SE	4.13	Not indicated
BHP Burwood	DDH8 (1971)	1.8 km NW	2.74	Not indicated
BHP Burwood	No 7 Fan Shaft	1.9 km NW (?)	2.64	Not indicated
BHP Burwood Lambton	Pump Bore DDH (1958)	2.2 km ESE	3.87	Not indicated
Waratah	DDH8 (1960)	2.4 km NW	3.04	2.26
BHP Burwood Dudley	DDH1 (1954)	2.7 km ENE	3.93	Not indicated
South Burwood or Dudley	Downcast Shaft (1890)	2.7 km ESE	4.14	Not indicated
Burwood Dudley	DDH1	2.7 km ENE	3.93	Not indicated
South Burwood	Upcast Shaft (1890)	3.3 km ESE	3.18	Not indicated
Waratah	DDH7 (1960)	3.5 km NW	3.04	2.07
Waratah	DDH6-Tickhole Tunnel (1960)	4.9 km NW	3.11	2.65

Photo 1, below, from LMCC online archives, shows the workings in the Victoria Tunnel Seam at Burwood Colliery. Note there can be two people seen to the left of the photo. There seems to be limited headroom above standing height.

Photo 1 - Victoria Tunnel Seam, Burwood Colliery (Ref LMCC online archives)

In addition, a CSIRO report titled "Petrographic Data on some New South Wales Coals", by G H Taylor in 1963 indicated an overall Burwood Colliery Victoria Tunnel seam thickness of about 2.79 m, and an inferred working section of about 2.19 m. It's not known to where this data specifically related.

The 1969 "Geology of New South Wales" publication by the Geological Society of Australia (edited G H Packham) indicates that the working section of the Victoria Tunnel Seam is rarely more than 7 feet (2.1 m).

Based on a review of the available data, a seam thickness and working section thickness of 2.4 m has been assumed for the workings beneath the site. It is considered likely that this thickness represents an over-estimate of the working section beneath the site, based on the two publications referenced above, Photo 1, and the available data on the thickness of the Victoria Tunnel working section in other collieries.

A sensitivity analysis has been based on a pillar height of 3.0 m. It is considered likely that this would represent an over-estimate of the working section beneath the site.

4. Pillar Stability Analysis

Pillar stability analysis was undertaken using the UNSW Pillar Stability Formula (Ref 2). Pillars used in the analysis, and the assigned numbering system, are shown on Drawing 2, attached. When DP previously undertook a pillar stability analysis for the medical suites to the south, 81 pillars were modelled. These previously modelled pillars have been incorporated into the current model, and are numbered A1 to A81. Eighty-five additional pillars were incorporated into the model, to expand coverage to and around the current site extents. The pillars added to the current model are numbered B1 to B85.

The stability analysis was therefore undertaken for 166 pillars within and up to at least 100 m beyond the angle of draw relative to the edge of the site to the north, west and south of the site. The model was not expanded to the east of the site due to the presence of a barrier within the workings.

All pillar dimensions were measured as per RT 303A. Abutment loads were applied to pillars adjacent to areas of pillar extraction. Analysis was undertaken using an iterative process.

During the initial analysis (Run 1), some localised pillars (generally within areas of full or partial pillar extraction) indicated a likelihood of failure / crush. During the second iteration of the analysis (Run 2), it was assumed that these localised pillars had crushed, and abutment loads were transferred to surrounding pillars, where present.

Run 2 suggested that the pillars with the lowest factors of safety within the project area were generally related to pillars B41, B42 and B43. These three pillars are located within the angle of draw, but not beneath the site. They are located in an area where there has been full pillar extraction along both sides of the pillar. Run 2A (Table A.6) analysed the impact that assumed crushing of these three pillars might have on the pillars beneath the site and within the angle of draw.

In addition to the analysis referred to above, sensitivity analyses were undertaken as follows:

- Run 3: decrease the pillars in Run 2 by 1 m;
- Run 4: increase the working section height in Run 2 to 3.0 m;
- Run 5: decrease the pillars in Run 2 by 1 m and also increase the working section height to 3 m.

The attached Drawings 3 to 5 provide a graphical representation of the factors of safety for the pillars in each of Runs 2, 3 and 4. Each of Runs 3 to 5 is considered conservative. The annotations on the RT, and the recent nature of the workings suggest that it is unlikely that additional coal was taken from the pillars beyond what is shown on the RT. Based on the available information, a working section height of 3 m is considered highly unlikely. While analysis was undertaken for Run 5, a graphical representation is not provided as it is considered that the combination of two conservative sensitivity analyses is not a credible scenario.

The results of the analyses are given in Tables A.1 to A.6, attached. The results of Runs 2, 2A, 3 and 4, are summarised in Table 2, below.

Table 2: Summary of Results of Pillar Analysis (Runs 2 and 2A) and Sensitivity Analyses (Runs 3 and 4)

Analysis Run No	2	2A	3	4
Table No in Appendix:	A.2	A.6	A.3	A.4
Pillar Height (m)	2.4	2.4	2.4	3.0
Pillar Dimensions	as per RT, with crushed pillars removed	as per RT, with low FoS pillars removed beneath site	Pillars reduced by 1 m from RT	as per RT
Max W:H Ratio within angle of draw	7.8	7.8	7.4	6.3
Min W:H Ratio within angle of draw	6.3	6.3	5.9	5.1
Average W:H Ratio within angle of draw	7.1	7.1	6.6	5.6
Min FoS within angle of draw:	1.97	2.38	1.72	1.49
Max FoS within angle of draw:	4.76	4.76	4.08	3.54
Average FoS within	3.60	3.66	3.06	2.76

5. Comments

Based on the available data it is considered that the working section is unlikely to have been greater than 2.4 m, and is likely to have been less than 2.4 m.

Given the age of the workings ranging from late 1960's to early 1970's, the pillar dimensions are unlikely to differ significantly from that shown on the RT.

The pillars located beneath the site and within the angle of draw are somewhat "protected" by larger pillars (B16 to the north), a barrier within the workings to the east, and large areas of pillars with factors of safety greater than 3.0 to the south.

An area of full pillar extraction is located west of the site, and partly within the angle of draw. A number of pillars west of the area of pillar extraction indicated marginal stability with factors of safety less than 1.5 (e.g. B51-54), however none of these pillars are located within the angle of draw for the site. It is considered that if these pillars fail, the loss of these pillars will not increase abutment loads in the project area as pillars within higher factors of safety, and an area of full pillar extraction are located between the marginal pillars and the angle of draw. Hence, based on the layout of the mine workings, and the analysis undertaken, it is not credible for a pillar run to propagate through the site.

Pillar stability analysis based on the estimated upper limit working section height of 2.4 m and pillar dimensions shown on the RT (Run 2) demonstrates a minimum pillar factor of safety of 1.97 within the project angle of draw. After the removal of pillars B41, B42 and B43 from the analysis (Run 2A), the minimum factor of safety within the project angle of draw increases to 2.38, with an average factor of safety of 3.66. A pillar run through the site is not considered to be credible under these conditions.

If the pillar dimensions were decreased by 1.0 m from what is shown on the RT, then the minimum pillar factor of safety within the angle of draw (Run 3) decreases to 1.72, with an average factor of safety of 3.06. Given the conservative nature of the sensitivity analysis, a pillar run is also not considered to be credible under these conditions.

If the working section thickness is increased to 3.0 m height, and the pillar dimensions are as shown on the RT, then the analysis (Run 4) suggests that the minimum factor of safety within the angle of draw would be 1.49, with an average factor of safety of 2.76. As previously discussed, a working section height of greater than 2.4 is considered to be highly unlikely, hence a pillar run under these conditions is also considered not credible.

6. Conclusions

Based on the results of the above, the pillars within the project angle of draw have an acceptable factor of safety even when considering the sensitivity analyses, which model conditions which are unlikely to be present.

The risk of a pillar run propagating through the site is considered not credible.

Hence, based on the layout of the mine workings as shown on the record trace, together with historical data regarding the working section height in the Victoria Tunnel Seam, it is considered that the risk of pillar failure in the Victoria Tunnel Seam workings at this site is not credible.

7. References

- Douglas Partners Pty Ltd, "Report on Desk Study Mine Subsidence Risk, Lake Macquarie Private Hospital Medical Suits – Stage 2, Sydney Street, Gateshead", Project No. 16471.12 dated 26 July 2010.
- 2. Galvin, J M, Hebblewhite, B K, Salamon, M D G and Lin, B B, "Establishing the Strength of Rectangular and Irregular Pillars", Final Report for ACARP Project C5024, 1998.

8. Limitations

Douglas Partners Pty Ltd (DP) has prepared this report for this project at Lake Macquarie Private Hospital, O'Brien Street, Gateshead in accordance with DP's proposal NCL150797 dated 25 November 2015 and acceptance received from Mr Hector Pedrol of Akalan Project Pty Ltd dated 20 September 2016. The work was carried out under DP's Conditions of Engagement. This report is provided for the exclusive use of Akalan Project Pty Ltd for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Subsurface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

The scope for work for this investigation/report did not include the assessment of surface or subsurface materials or groundwater for contaminants, within or adjacent to the site. Should evidence of filling of unknown origin be noted in the report, and in particular the presence of building demolition materials, it should be recognised that there may be some risk that such filling may contain contaminants and hazardous building materials.

Douglas Partners Pty Ltd

Appendix A

About This Report

Table A.2 - Pillar Stability Analysis - Run 2 - Remove Crushed Pillars from Run 1

Table A.3 - Pillar Stability Analysis - Run 3 - Decrease Run 2 Pillars by 1 m

Table A.4 - Pillar Stability Analysis - Run 4 - Run 2 Working Section Increased to 3.0 m

Table A.5 – Pillar Stability Analysis – Run 5 - Decrease Run 2 Pillars by 1 m and Increase Working Section to 3.0 m

Table A.6 – Pillar Stability Analysis – Run 2A – Remove Low FoS Pillars from Beneath Angle of Draw

Drawing 1 - Site Location Plan

Drawing 2 – Layout of Mine Workings (RT303A) and Pillar Numbering

Drawing 3 – Pillar Factor of Safety – Run 2

Drawing 4 – Pillar Factor of Safety – Run 3 (Pillars Decreased by 1 m)

Drawing 5 - Pillar Factor of Safety - Run 4 (Working Section increased to 3.0 m)

About this Report

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report;
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Table A.1: Pillar Stability Analysis

Run 1: Pillars As Measured

Client:

Akalan Projects

Project: Location:

Lake Macquarie Private Hospital Northern Expansion O'Brien Street, Gateshead NSW Pillar formula Date: 18/10/16 Sheet:

Analysis Assumptions: Project Number 16471.21 Calculations by JAW Key to Colour Coding of Factors of Safety / Width: Height Ratios

Greater than 3.0 Between 2.2 and 3.0 2.10 Between 1.8 and 2.2
1.70 Between 1.5 and 1.8 1.20 Less than 1.5

Indicating Pillar Located within Project Angle of Draw Indicating Pillar Located beneath site

ld:		Depth	Panel Width/Span	1	-	Pillar Height	Unit	Pillar Details		way Deta			otal w1/	w2/H W		Width N		Pillar	Pillar	Proportion			Abutment	Shed	Abutment	Pillar	Pillar			Power La		Probability
(~ I		n	(Longwall only)	Thickness	Section	Section	Weigth	Width Length w1 w2	Internal Angle b1	1 b2	Ratio	Area Ar	ea Height	Height H	· I -	ο Θ	w⊚ Effective	Stress (Tributary)	Load (Tributary	Abutment transfer	Angle	Abut (A) Yield (Y)	Loading Type	Load	Load	Stress (MPa) ("Yield")	Stress ("Abut")	Squat	Strength	"Ultimate" F Load	oS Probab of Fail	-
i l		(m)	(m)	(m)	(m)	(m)	(kN/m³)	(m) (m)	· · ·	n) (m)	(%)	m³ n	n ³ w1/H	w2/H	auo O	~ °	Width	(MPa)	MN	R		(?)	M,T,G	MN	Received	φ _e = 0.7	(MPa)	Squat	(MPa)	MN	OI Fall	Formulae
A1		127.7		2.4	2.4	2.4	25	18.6 31.0			32.2 5	576.6 85	0.7 7.8	12.9	.75 1.2	250 1.25	0 23.250	4.71	2716	0.79	20							Yes	23.31	13443 4	.95 2.3E-	24 1 in 100000
A2		126.7		2.4	2.4	2.4	25	17.4 31.5		2 5.1			7.2 7.3	13.1			8 22.417	4.78	2619	0.77	20							Yes	22.00	12057 4	.60 3.4E-	
A3 A4	Tailgate Loading	126.7 124.6	22.0	2.4	2.4	2.4	25 25	19.1 31.4 16.8 31.4		3 5.4 4 5.1		527.5 81	7.9 8.0 0.3 7.0	13.1			4 23.752 3 21.889	4.74	2843 2523	0.81	20	A	Т		1868		8.32	Yes	23.99	14388 5 11259 2	.06 4.7E-	
A5	rangate Loading	124.1	22.0	2.4	2.4	2.4	25	16.5 31.1		4 5.2		513.2 79		13.0			7 21.561	4.81	2466	0.77	20				1000		0.02	Yes	21.00	10777 4	.37 9.8E-	
A6		123.6	***************************************	2.4	2.4	2.4	25	17.7 26.9	90.0 4.8	8 5.3		476.1 72	4.5 7.4		.38 1.2	206 1.20	6 21.351	4.70	2238	0.78	20							Yes	21.66	10314 4	.61 3.2E-	
A7		123.1		2.4	2.4	2.4	25	17.2 26.5		2 5.4			4.6 7.2				3 20.860	4.82	2199	0.78	20							Yes	21.08	9606 4	.37 1.0E-	
A8		122.7		2.4	2.4	2.4	25	16.7 26.5		4 5.8			3.8 7.0				7 20.488	4.95	2189	0.77	20							Yes	20.58	9106 4	.16 2.0E-	
A9 A10		121.4 123.9		2.4	2.4	2.4	25 25	17.0 27.6 17.3 17.4		0 5.3 3 4.9			3.8 7.1 4.0 7.2	7.3			8 21.040 3 17.350	4.68 5.19	2196 1561	0.77	20							Yes Yes	21.04 19.24	9872 4 5793 3	.50 1.6E-	
A11		124.2		2.4	2.4	2.4	25	17.0 17.3		3 5.0		294.1 49		7.2			9 17.149		1544	0.77	20							Yes	18.96	5575 3	.61 5.4E-	
A12		123.2		2.4	2.4	2.4	25	16.7 17.1	90.0 5.1	1 5.2	41.3 2	285.6 48	6.1 7.0	7.1	.96 1.0	1.01	2 16.898	5.24	1498	0.76	20							Yes	18.65	5326 3	.56 1.2E-	15 1 in 100000
A13		123.0		2.4	2.4	2.4	25	17.0 17.0		3 5.1			2.8 7.1	7.1			0 17.000		1515	0.78	20							Yes	18.87	5454 3	.60 6.4E-	
A14 A15		121.9 128.8		2.4	2.4	2.4	25 25	17.0 17.1 24.5 38.0		5 5.7 2 5.1			3.0 7.1 37.0 10.2	7.1 15.8 1			3 17.050 6 29.792	5.38 4.28	1563 3984	0.78	20							Yes Yes	18.90 33.43	5494 3 31125 7	.51 2.2E-	
A16		128.9		2.4	2.4	2.4	25	18.6 31.5		4 5.3			3.2 7.8	13.1			7 23.389	4.86	2846	0.80	20							Yes	23.39	13702 4	.81 1.6E-	
A17		128.8		2.4	2.4	2.4	25	20.0 31.7		3 5.9			1.3 8.3	13.2			6 24.526	4.83	3064	0.82	20		********************************			***************************************	******************************	Yes	25.21	15982 5	.22 5.0E-	
A18		127.3		2.4	2.4	2.4	25	19.1 31.7		2 5.4	32.8	305.5 90	1.5 8.0	13.2	.96 1.2	248 1.24	8 23.837	4.74	2869	0.80	20							Yes	24.03	14552 5	.07 4.0E-	25 1 in 100000
A19		125.9		2.4	2.4	2.4	25	17.0 31.5		2 5.5			1.4 7.1				9 22.082		2585	0.77	20							Yes	21.57	11549 4	.47 2.4E-:	
A20 A21		125.1 124.4	***************************************	2.4	2.4	2.4	25 25	16.3 31.5 17.2 16.0		3 5.4 3 5.0			7.0 6.8 2.5 7.2				8 21.483 4 16.578	4.85 5.34	2493 1469	0.76	20		***************************************			***************************************		Yes Yes	20.85 18.74	10704 4 5159 3	.29 2.9E-3	
A21		123.9		2.4	2.4	2.4	25	17.2 16.4		2 5.0			9.4 7.2				6 16.790	5.27	1485	0.78	20							Yes	18.87	5322 3	.51 2.3E-	
A23		123.6		2.4	2.4	2.4	25	17.4 16.4	90.0 4.8	8 5.3			1.7 7.3	6.8			0 16.885	5.22	1489	0.77	20							Yes	19.04	5433 3	.65 3.1E-	
A24		123.0		2.4	2.4	2.4	25	17.4 16.4		3 5.2			0.3 7.3	6.8			0 16.885	5.28	1508	0.78	20							Yes	19.04	5433 3	.60 6.0E-	
A25 A26	Tailgate Looding	121.9 129.9	22.0	2.4	2.4	2.4	25	17.4 16.4 20.5 23.8		3 5.3 4 6.2			7.0 8.5	6.8			0 16.885 4 22.027	5.26 5.17	1501 2523	0.78	20		т		1610		8.47	Yes	19.04	5433 3 11868 2	.62 4.8E- .87 2.3E-	
A26 A27	Tailgate Loading Tailgate Loading	130.2	22.0	2.4	2.4	2.4	25 25	20.5 23.8		6 6.2			01.0 9.4	9.9			1 28.826		4236	0.83	20	A	T T		1610 2492		7.46	Yes	24.32 30.23	27274 4	.05 9.2E-	
A28	Tungato Louding	128.8		2.4	2.4	2.4	25	23.4 25.8		4 5.3		603.7 89		10.8			9 24.541	4.78	2884	0.87	20					***************************************		Yes	28.91	17453 6	.05 3.0E-	
A29		128.2		2.4	2.4	2.4	25	10.2 25.4		5 5.3	46.2 2	259.1 48	2.0 4.3	10.6	.25 1.4	127 1.16	0 11.829	5.96	1545	0.61	20							No	14.53	3765 2	.44 1.2E-	08 1 in 100000
A30		127.3		2.4	2.4	2.4	25	13.5 25.7		5 5.3		347.0 58		10.7			8 17.112	5.40	1874	0.70	20							Yes	17.56	6092 3	.25 9.7E-	
A31 A32		125.3 124.5		2.4	2.4	2.4	25 25	17.4 16.7 17.8 16.7		4 5.2 4 5.1		290.6 49 297.3 50	9.3 7.3 5.8 7.4	7.0			9 17.043 8 17.232	5.38	1564 1574	0.78	20							Yes Yes	19.13 19.48	5558 3 5791 3	.55 1.2E- .68 2.0E-	
A33		125.9		2.4	2.4	2.4	25	17.3 16.6		6 5.0			4.6 7.2	6.9			9 16.943	5.42	1557	0.78	20							Yes	19.01	5460 3	.51 2.4E-	
A34		122.8		2.4	2.4	2.4	25	17.3 16.1	90.0 5.5	5 5.2		278.5 48		6.7	.71 0.9	0.96	4 16.678	5.35	1491	0.79	20							Yes	18.86	5253 3	.52 1.9E-	15 1 in 100000
A35		121.9		2.4	2.4	2.4	25	17.3 16.9		3 5.2		292.4 49		7.0			8 17.098	5.20	1521	0.78	20							Yes	19.10	5584 3	.67 2.3E-	
A36		126.5		2.4	2.4	2.4	25	20.0 16.1		4 5.5			8.6 8.3	6.7			2 17.839		1735	0.82	20							Yes	21.43	6901 3	.98 2.8E-	
A37 A38		125.1 124.0		2.4	2.4	2.4	25 25	17.8 16.1 17.6 15.8		2 5.5 1 5.6			6.8 7.4 5.8 7.3				0 16.907 6 16.651	5.42	1554 1505	0.78	20							Yes	19.29 19.02	5529 3 5290 3	.56 1.1E-	
A39		123.6		2.4	2.4	2.4	25	17.6 16.0		3 5.4			0.1 7.3	6.7			2 16.762	5.38	1514	0.79	20							Yes	19.09	5375 3	.55 1.3E-	
A40		121.8		2.4	2.4	2.4	25	17.6 16.4		3 5.5			1.5 7.3		.83 0.9	0.96	5 16.979	5.29	1527	0.79	20							Yes	19.21	5545 3	.63 4.0E-	16 1 in 100000
A41	Double Goaf Loading	130.0	45.0	2.4	2.4	2.4	25	28.0 32.6		5 5.7			33.1 11.7				6 30.125	4.57	4170	0.92	20	Α	G		4270		9.25	Yes	39.07	35659 4	.23 7.8E-:	
A42 A43		127.3 126.8		2.4	2.4	2.4	25 25	21.0 23.9 16.3 22.1		3 5.1 5 5.7			2.7 8.8 6.0 6.8	9.2			5 22.356 1 18.762	5.33	2427 1922	0.84	20							Yes	24.99 19.46	12544 5 7009 3	.17 1.0E-3	
A44		125.1		2.4	2.4	2.4	25	17.8 16.4		0 5.6			1.6 7.4				9 17.071	5.37	1569	0.78	20							Yes	19.39	5660 3	.61 5.6E-	
A45		124.3		2.4	2.4	2.4	25	17.8 16.4		1 5.5		291.9 50	1.5 7.4				9 17.071	5.34	1558	0.78	20							Yes	19.39	5660 3	.63 3.9E-	
A46		124.2		2.4	2.4	2.4	25	17.8 16.4		4 5.4		291.9 50					9 17.071	5.38	1570	0.79	20							Yes	19.39	5660 3	.60 6.0E-	
A47		122.0		2.4	2.4	2.4	25	17.8 16.7					0.4 7.4				8 17.232		1556	0.79	20					······		Yes	19.48	5791 3	.72 1.1E-	
A48 A49		128.2 126.8		2.4	2.4	2.4	25	18.9 29.1 33.6 44.0	00.0	· · · ·			4.0 7.9 55.0 14.0				3 22.916 4 38.103		2801 6199	0.81	20 20							Yes Yes	23.39 55.75	12863 4 82417 13	.59 4.0E-3 3.30 1.6E-3	
A50		128.2		2.4	2.4	2.4	25	17.8 43.0		1 6.2			26.7 7.4	17.9			4 25.178		3611	0.78	20							Yes	23.64	18093 5	.01 9.7E-:	
A51		125.1		2.4	2.4	2.4	25	13.8 16.6	90.0 6.5	5 5.2	48.2 2	229.1 44	2.5 5.8	6.9	.75 1.0	92 1.08	4 14.961	6.04	1384	0.73	20							Yes	16.46	3770 2	. 72 1.9E-	10 1 in 100000
A52		126.7	00.5	2.4	2.4	2.4	25	33.0 13.8					2.1 13.8	5.8			0 19.462		2476	0.97	20				0.4			Yes	38.61	17583 7	.10 8.4E-	
A53 A54	Tailgate Loading	130.2 129.4	22.0	2.4	2.4	2.4	25 25	14.7 39.0 14.7 43.3		5 6.6 5 6.5			6.7 6.1 55.8 6.1				3 21.352 3 21.949		3147 3416	0.74	20 20	A	Т		2454		9.77	Yes Yes	20.03	11481 2 12927 3	.05 3.1E-	
A54 A55		129.4		2.4	2.4	2.4	25	15.8 67.0					20.6 6.6				8 25.570		5158	0.74	20							Yes	22.49	23810 4	.62 2.8E-3	
A56		124.8		2.4	2.4	2.4	25	13.0 14.5	90.0 6.2	2 8.8			7.4 5.4				4 13.568		1396	0.71	20							Yes	15.52		.10 1.6E-	
A57		127.9		2.4	2.4	2.4	25	12.7 40.3		4 6.1			6.2 5.3	16.8			7 17.493		2834	0.70	20							Yes	17.64	9027 3	.19 2.5E-	
A58 A59	Double Goof Loading	125.1	22.0	2.4	2.4	2.4	25	15.0 33.1		7 6.5 2 5.6				13.8			6 20.644 1 19.342		2688	0.76	20	Α			2050		10.62	Yes	19.80	9832 3 7797 1	.66 2.7E-	
A59 A60	Double Goaf Loading Tailgate Loading	130.3 129.8	22.0	2.4	2.4	2.4	25 25	15.1 26.9 14.6 38.6					2.3 6.3 7.7 6.1	11.2			1 19.342		2255 3010	0.74	20	A	G T		2059		10.62 9.58	Yes Yes	19.20 19.91		.81 1.0E-	
A61		132.3		2.4	2.4	2.4	25	14.6 43.6					12.9 6.1				8 21.875		3449	0.73	20							Yes	20.24	12881 3	.73 9.2E-	
A62		127.3		2.4	2.4	2.4	25	14.6 26.5					4.6 6.1				0 18.827		2179	0.74	20							Yes	18.75	7253 3	.33 3.1E-	
A63		130.0		2.4	2.4	2.4	25	12.2 52.9					37.8 5.1				1 17.093		3535	0.68	20							Yes	17.40	11229 3	.18 2.8E-	
A64 A65	Double Goaf Loading	127.3 125.1	45.0	2.4	2.4	2.4	25 25	12.2 50.8 20.7 24.5		2 6.3 .9 5.3			50.6 5.1 66.1 8.6				4 17.002 4 22.440		3344 10215	0.68 1.75	20	A	G		3158		26.37	Yes	17.35 24.75	10754 3 12551 0	.22 1.6E-	
A66	Maingate Loading	126.1	45.0	2.4	2.4	2.4	25	15.8 24.5					40.0 6.6				6 19.211	21.50	8323	1.15	20	A	M		5758		36.37	Yes	19.44	7525 0	.53 1.8E+	
A67	Maingate Loading	127.9	45.0	2.4	2.4	2.4	25	16.2 24.3	90.0 37.	.2 5.7			02.0 6.8				0 19.440		5122	1.00	20	Α	М		3419		21.70	Yes	19.76	7778 0	.91 7.0E-	
A68	Maingate Loading	122.1	22.0	2.4	2.4	2.4	25	16.0 35.4					2.7 6.7				7 22.039		2633	0.76	20	Α	М		1150		6.68	Yes	20.96	11869 3	.14 4.9E-	
A69		122.1		2.4	2.4	2.4	25	17.4 19.4		6 6.5			5.7 7.3				4 18.346		1818	0.79	20							Yes	19.86	6704 3	.69 1.8E-	
A70 A71		122.1 121.2		2.4	2.4	2.4	25 25	16.9 19.2 16.9 19.2		4 6.5 9 6.5			3.1 7.0 0.3 7.0		_		4 17.977 4 17.977	-	1749 1698	0.78	20							Yes	19.36 19.36	6282 3 6282 3	.59 7.2E- .70 1.5E-	
A72		120.6		2.4	2.4	2.4	25	16.9 19.2	90.0 5.0	0 6.5	42.3	324.5 56	2.8 7.0	8.0	.04 1.0	064 1.06	4 17.977	5.23	1697	0.77	20							Yes	19.36	6282 3	.70 1.5E-	
A73	Maingate Loading	124.2	22.0	2.4	2.4	2.4	25	16.5 31.9	90.0 5.3	3 4.7	34.0 5		7.9 6.9						2477	0.76	20	Α	М		1068		6.74	Yes	21.09	11103 3	.13 5.3E-	

Table A.1 Run 1 Page 1 16471.21 Pillar Stability Analysis

Table A.1: Pillar Stability Analysis

Analysis Assumptions:

Project Number

Run 1: Pillars As Measured

Akalan Projects

Client:

Project: Lake Macquarie Private Hospital Northern Expansion
Location: O'Brien Street, Gateshead

 O'Brien Street, Gateshead
 Date:
 18/10/16

 NSW Pillar formula
 Sheet:
 1

 16471.21
 Calculations by JAW

Key to Colour Coding of Factors of Safety / Width: Height Ratios

4.50
Greater than 3.0
2.40
Between 2.2 and 3.0
2.10
Between 1.8 and 2.2
Indicating Pillar Located within Project Angle of Draw
Indicating Pillar Located beneath site

1.20 Less than 1.5

Analysis	Comment	Depth	Panel Width/Span	Seam	Working F	Pillar Height	Unit	Pillar De	etails	i	adway Deta	Extract.	Pillar	Total	w1/ v	w2/H \	Width/	Width	n Modifier	Pillar	Pillar	Proportion	Abutment		Abutment	Shed	Abutment	Pillar	Pillar			Power L	aw	Р	Probability
ld:		.,	(Longwall only)	Thickness	Section	Section	Weigth	Width I	Length I	Internal		Ratio	Area			leight l	Height	_ [wΘ	Stress	Load	Abutment	Angle	Abut (A)	Loading	Load	Load	Stress (MPa)	Stress		Strength	"Ultimate"	FoS Probal	oility	of Failure
		D (m)	(m)	(m)	H (m)	H (m)	γ (kN/m³)	w1 (m)	w2 (m)	Angle (°)	b1 b2 (m)	(%)	m ³	m ³		Ratio w2/H	Ratio	Θ ₀ 6	Effective Width	(Tributary) (MPa)	(Tributary MN	transfer	۰	Yield (Y)	Type M,T,G	MN	Received MN	("Yield") ₀= 0.7	("Abut") (MPa)	Squat	(MPa)	Load MN	of Fai		ISW Power Formulae
A74		122.3	(111)	2.4	2.4	2.4	25	(***/			5.5 5.2	42.3	285.4			7.3	6.83 1	.030 1.0	030 16.885	5.30	1513	0.77	20	(:)	IVI, T,O	IVIIA	IVIIV	ψg- 0.1	(ivii a)	Yes	18.49	5276	3.49 3.2E-		in 1000000
A75		121.8		2.4	2.4	2.4	25	16.6	16.9		5.2 5.4	42.3	280.5	486.1	6.9	7.0	6.92 1	.009 1.0	009 16.749	5.28	1480	0.77	20							Yes	18.51	5194	3.51 2.4E-		in 1000000
A76 A77		121.8 121.2		2.4	2.4	2.4	25				4.8 5.7	41.8	283.9	487.9		7.1			16.846	5.23	1486	0.76	20							Yes	18.57	5271	3.55 1.3E-		in 1000000
A77	Maingate Loading	121.2	22.0	2.4	2.4	2.4	25 25				5.0 5.0 5.3 4.4	40.6 34.0	493.4			7.1 12.5			012 16.798 289 21.265	5.10 4.62	1440 2277	0.76	20	A	M		985		6.61	Yes Yes	18.54 20.85	5233 10288	3.63 3.9E- 3.15 3.9E-		in 1000000 in 1000000
A79	3, 3	121.9		2.4	2.4	2.4	25				6.6 5.3	45.4		522.1		7.3			041 16.871	5.58	1591	0.79	20							Yes	18.38	5241	3.29 5.2E-		in 1000000
A80	Tailgate Loading	125.6	45.0	2.4	2.4	2.4	25				23.2 5.0	61.7				13.1			260 23.310	8.20	4779	0.98	20	Α	Т		3305		13.87	Yes	23.27	13558	1.68 6.6E-		1 in 1777
A81 B1		121.8 121.2		2.4	2.4	2.4	25 25				5.2 5.1 5.4 6.7	42.1 46.5		465.6 510.8		7.3 6.6			064 16.383 961 16.524	5.26 5.66	1418 1548	0.74	20							Yes	17.75 18.71	4785 5118	3.38 1.6E- 3.31 4.3E-		in 1000000 in 1000000
B2		120.6		2.4	2.4	2.4	25				5.4 6.7	46.8				6.6			972 16.338	5.66	1513	0.78	20							Yes	18.39	4911	3.25 1.0E-		in 1000000
В3		120.1		2.4	2.4	2.4	25	16.0	15.4	90.0	5.4 6.7	47.9	246.4	472.9	6.7	6.4	6.42 0	.981 0.9	981 15.694	5.76	1420	0.76	20							Yes	17.62	4342	3.06 1.5E-	12 1 ir	in 1000000
B4 B5		120.2		2.4	2.4	2.4	25				5.4 5.0 5.4 5.0	42.2				6.5			952 16.461	5.20	1412	0.79	20							Yes	18.73	5088	3.60 6.0E-		in 1000000
B6		119.6 119.2		2.4	2.4	2.4	25 25				5.4 5.0 5.4 5.0	42.4	267.0 278.5			6.6			966 16.331 964 16.678	5.19 5.12	1387 1427	0.78	20							Yes Yes	18.44 18.86	4923 5253	3.55 1.3E- 3.68 2.0E-		in 1000000 in 1000000
B7		118.6		2.4	2.4	2.4	25				5.4 5.2	36.3				10.3	7.63 1		147 20.987	4.65	2094	0.81	20							Yes	21.90	9860	4.71 7.5E-		in 1000000
B8		119.0		2.4	2.4	2.4	25				5.4 5.2	36.3				10.4			158 20.962	4.67	2104	0.80	20							Yes	21.74	9799	4.66 1.6E-		in 1000000
B9 B10		120.0 121.3		2.4	2.4	2.4	25 25				5.4 5.2 5.4 5.2	36.4 35.8				10.4			161 20.895 136 21.350	4.71	2113 2194	0.80	20							Yes	21.64 22.48	9697 10439	4.59 4.2E- 4.76 3.7E-		in 1000000 in 1000000
B11	Maingate Loading	121.8	22.0	2.4	2.4	2.4	25				6.1 4.8	36.3				16.7			130 21.330 149 22.029	4.78	2906	0.76	20	Α	М		1310		6.93	Yes	20.56	12498	2.96 5.9E-		in 1000000
B12		121.0		2.4	2.4	2.4	25	18.6	19.0		5.4 5.2	39.2	353.4	580.8		7.9	7.75 1		011 18.798	4.97	1757	0.81	20							Yes	20.92	7393	4.21 1.0E-	19 1 iı	in 1000000
B13		119.7		2.4	2.4	2.4	25				5.4 5.2	40.8				7.8	7.00 1		054 17.699	5.05	1588	0.78	20							Yes	19.15	6017	3.79 4.1E-		in 1000000
B14 B15		118.4 117.7		2.4	2.4	2.4	25 25				5.4 5.2 5.4 5.2	40.5 39.8				7.8 8.1			042 17.919 060 18.334	4.97 4.89	1599 1650	0.79 0.79	20							Yes Yes	19.50 19.79	6273 6677	3.92 6.0E- 4.05 1.0E-		in 1000000 in 1000000
B16		119.0		2.4	2.4	2.4	25				5.4 5.2	17.9				17.6			300 50.744	3.63	9722	1.01	20							Yes	173.66	465736	7.90 8.0E-2		in 1000000
B17		119.7		2.4	2.4	2.4	25				5.5 5.7	37.0		794.9		13.0			318 21.217	4.75	2379	0.77	20				4000			Yes	20.61	10318	4.34 1.6E-		in 1000000
B18 B19	Tailgate Loading Maingate Loading	119.9 120.0	22.0 45.0	2.4	2.4	2.4	25 25				5.6 5.7 5.6 5.7	36.7 35.9	519.4 547.8			13.0 13.0			301 21.731 283 22.449	4.74 4.68	2460 2564	0.78	20	A A	T M		1803 1723		8.21 7.83	Yes Yes	21.20 22.08	11013 12096	2.58 1.4E- 2.82 4.6E-		in 1000000 in 1000000
B20	Maingate Loading	119.5	45.0	2.4	2.4	2.4	25				5.6 4.9	34.5	549.5			13.1			284 22.474	4.56	2505	0.80	20	A	M		1683		7.62	Yes	22.10	12141	2.90 1.5E-		in 1000000
B21		119.3		2.4	2.4	2.4	25				5.8 4.9	35.8	522.5	813.6	7.0	13.0			299 21.815	4.64	2427	0.79	20							Yes	21.31	11133	4.59 4.2E-		in 1000000
B22 B23		119.2 119.1		2.4	2.4	2.4	25 25		30.9 15.0		5.5 0.9 5.7 5.6	27.7 49.1	494.4	683.7		12.9			318 21.083 053 13.898	4.12	2037 1159	0.77	20							Yes	20.49 15.74	10129 3117	4.97 1.7E- 2.69 3.1E-		in 1000000 in 1000000
B23		118.2		2.4	2.4	2.4	25				5.7 5.4	54.5				6.3 4.3			910 11.741	5.85 6.49	863	0.71	20							Yes Yes	14.41	1915	2.22 2.7E-		in 1000000
B25		117.5		2.4	2.4	2.4	25		10.1	90.0	6.1 5.4	54.8				4.2	4.21 0	.845 0.8	357 11.828	6.50	906	0.74	20							Yes	14.60	2035	2.25 1.8E-		in 1000000
B26		116.8		2.4	2.4	2.4	25				6.6 5.4	56.4				4.1			359 11.679	6.70	902	0.74	20							Yes	14.47		2.16 6.5E-		in 1000000
B27 B28		116.0 115.2		2.4	2.4	2.4	25 25				6.1 5.4 5.6 5.4	55.4 53.8				4.0			323 11.521 353 11.766	6.51 6.23	874 860	0.74	20							Yes Yes	14.45 14.56	1942 2009	2.22 2.6E- 2.34 5.1E-		in 1000000 in 1000000
B29		114.5		2.4	2.4	2.4	25				5.6 5.3	49.2				5.6			993 13.510	5.64	1028	0.73	20				~~~~~			Yes	15.58	2840	2.76 1.1E-		in 1000000
B30		115.3		2.4	2.4	2.4	25				6.1 5.3	50.0				5.7			990 13.759	5.76	1090	0.74	20							Yes	15.79	2985	2.74 1.5E-		in 1000000
B31 B32		116.0 116.7	***************************************	2.4	2.4	2.4	25 25				6.6 5.3 6.1 5.3	52.1 49.4				5.8 5.9			035 13.244 003 14.047	6.06 5.76	1086 1138	0.73	20		***************************************					Yes Yes	15.31 15.98	2744 3155	2.53 3.2E- 2.77 9.3E-		in 1000000 in 1000000
B33		117.4		2.4	2.4	2.4	25				5.7 5.3	49.7				5.8			032 13.316	5.83	1054	0.71	20							Yes	15.36	2775	2.63 6.9E-		in 1000000
B34		118.3		2.4	2.4	2.4	25				5.5 5.0	36.4				12.9			329 20.733	4.65	2240	0.76	20							Yes	20.11	9695	4.33 1.8E-		in 1000000
B35 B36	Maingato Loading	118.0	45.0	2.4	2.4	2.4	25				5.8 5.0 5.6 5.0	36.1	510.4 517.3			12.6 12.5			282 21.672 267 21.918	4.62	2357	0.79	20	^	M		1591		7.64	Yes	21.30 21.68	10870 11214	4.61 3.0E- 2.84 3.6E-		in 1000000
B37	Maingate Loading Maingate Loading	118.1 117.3	45.0	2.4	2.4	2.4	25 25		29.9 30.6		5.7 4.5	35.3 34.4				12.8			267 21.918 278 22.104	4.56 4.47	2360 2367	0.80	20	A	M		1591		7.49	Yes Yes	21.77	11526	2.04 3.0E- 2.91 1.3E-		in 1000000 in 1000000
B38		117.2		2.4	2.4	2.4	25	17.0	30.6		5.8 4.5	35.0	520.2	800.3		12.8	7.08 1	.286 1.2	286 21.857	4.51	2345	0.80	20							Yes	21.45	11160	4.76 3.6E-		in 1000000
B39		115.9		2.4	2.4	2.4	25	12.8	11.2		5.7 4.9	51.9				4.7			948 12.131	6.02	863	0.71	20							Yes	14.64	2000	2.43 1.3E-		in 1000000
B40 B41	Double Goaf Loading	113.8 121.0	45.0	2.4	2.4	2.4	25 25			00.0	6.1 4.9 5.4 5.0	51.9 33.0				4.8 15.8			946 12.486 380 23.453	5.92 4.51	906 2900	0.73	20	A	G		4338		11.26	Yes Yes	14.91 22.24	2282 14290	2.52 3.6E- 1.97 9.2E-		in 1000000 in 144252
B42	Double Goaf Loading	122.0	45.0	2.4	2.4	2.4	25				5.3 4.8					12.5			247 22.578	4.57	2484	0.80	20	A	G		3566		11.14	Yes	22.58		2.03 4.3E-		in 338156
B43	Double Goaf Loading	123.0	45.0	2.4	2.4	2.4	25				5.8 4.6		*************			14.7			326 23.732	4.60	2901	0.80	20	A	G		4123		11.15	Yes	23.01		2.06 2.5E-		in 629304
B44 B45	Maingate Loading Tailgate Loading	124.0 125.0	22.0 45.0	2.4	2.4	2.4	25 25				5.8 4.6 5.0 11.5		***************************************	865.2 621.0		13.0 6.9			262 23.096 985 16.846	4.68 6.84	2682 1941	0.81	20	A A	M T		1128 2528		6.65 15.74	Yes Yes	23.00 18.84	13173 5348	3.46 4.9E- 1.20 1.4E-		in 1000000 1 in 8
B46	Tailgate Loading	128.0	22.0	2.4	2.4	2.4	25				10.0 5.4			669.9		6.6			345 18.250	6.28	2144	0.91	20	A	T		1119		9.56	Yes	23.08		2.41 1.6E-		in 1000000
B47	Tailgate Loading	127.7	45.0	2.4	2.4	2.4	25				8.9 5.5	48.2				6.6			368 17.884	6.16	2006	0.88	20	A	Т		1971		12.22	Yes	21.96	7147	1.80 1.2E-		1 in 9543
B48 B49	Maingate Loading Rotated Panel / Double Goaf	126.0 125.0	45.0 22.0	2.4	2.4	2.4	25 25				11.0 6.0 5.0 6.1			369.7 257.4		5.1 3.4			038 9.551 313 10.571	10.29 7.55	1164 804	0.73	20	A A	M M		941 368		18.61 11.00	No Yes	13.03 13.67	1474 1457	0.70 1.3E+ 1.24 8.9E-		1 in 2 1 in 12
B50	Maingate Loading	123.0	45.0	2.4	2.4	2.4	25				5.0 5.9					6.3			760 18.848	5.13	1933	0.89	20	A	M		1120		8.10	Yes	26.81	10106	3.31 4.1E-		in 1000000
B51	Rotated Panel / Double Goaf	123.5	45.0	2.4	2.4	2.4	25				5.7 5.5					11.2	****		282 19.234	5.14	2064	0.74	20	Α	G		3365		13.50	Yes	19.10	7678	1.41 1.3E-		1 in 70
B52 B53	Rotated Panel / Double Goaf Rotated Panel / Double Goaf	124.0 124.6	45.0 45.0	2.4	2.4	2.4	25 25				5.7 5.5 5.7 6.0			668.6 679.0		11.2 11.2			282 19.234 282 19.234	5.16 5.26	2073 2115	0.74	20	A	G G		3383 3457		13.57 13.86	Yes Yes	19.10 19.10	7678 7678	1.41 1.4E- 1.38 1.9E-		1 in 64 1 in 47
B54	Rotated Panel / Double Goaf	124.8	45.0	2.4	2.4	2.4	25				5.7 5.8			674.8		11.2			282 19.234	5.24	2105	0.74	20	A	G	 	3443		13.80	Yes	19.10	7678	1.38 1.9E- 1.38 1.8E-		1 in 50
B55	Rotated Panel / Maingate Load	125.0	45.0	2.4	2.4	2.4	25	15.0	26.8	90.0	5.7 5.8	40.4	402.0	674.8	6.3	11.2	6.25 1	.282 1.2	282 19.234	5.25	2109	0.74	20	Α	М		1490		8.95	Yes	19.10	7678	2.13 9.2E-	07 1 iı	in 1000000
B56	Double Goaf Loading	123.0	45.0	2.4	2.4	2.4	25				5.0 5.4					6.4			778 18.822	5.01	1868	0.88	20	A	G		2155		10.79	Yes	26.12		2.42 1.5E-		in 1000000
B57 B58	Double Goaf Loading Tailgate Loading	122.0 121.0	45.0 45.0	2.4	2.4	2.4	25 25				5.0 5.2 5.3 5.8	_				9.2 6.9			926 23.621 308 19.791	4.51 4.96	2530 2019	0.90	20	A A	G T	-	2787 1930		9.48	Yes Yes	31.00 27.14	17388 11037	7.3E- 2.79 6.8E-		in 1000000 in 1000000
B59	Rotated Panel / Double Goaf	121.5	45.0	2.4	2.4	2.4	25				5.8 5.4					11.1	7.00 1	.226 1.2	226 20.594	4.92	2197	0.78	20	A	G		3261		12.21	Yes	20.69	9246	1.69 5.2E-		1 in 2239
B60	Rotated Panel / Double Goaf	122.0	45.0	2.4	2.4	2.4	25				5.8 5.4					11.1			226 20.594	4.94	2206	0.78	20	A	G		3279		12.27	Yes	20.69	9246	1.69 5.8E-		1 in 1998
B61 B62	Rotated Panel / Double Goaf Rotated Panel / Double Goaf	123.0 123.5	45.0 45.0	2.4	2.4	2.4	25 25				5.8 6.2 5.8 6.0					11.1 11.1			226 20.594 226 20.594	5.10 5.09	2279 2275	0.78	20	A A	G G		3398 3396		12.70 12.69	Yes Yes	20.69	9246 9246	1.63 1.1E- 1.63 1.3E-		1 in 931 1 in 956
B63	Rotated Panel / Double Goaf	124.0	45.0	2.4	2.4	2.4	25				5.8 6.3					11.1			226 20.594	5.09	2305	0.78	20	A	G		3446		12.87	Yes	20.69	9246	1.61 1.4E-		1 in 712
B64	Rotated Panel / Double Goaf	125.5	45.0	2.4	2.4	2.4	25				5.8 6.1	39.8				10.8			215 20.411	5.21	2276	0.78	20	Α	G		3416		13.03	Yes	20.60	8997	1.58 1.9E-		1 in 502
B65	Double Goaf Loading	120.0	45.0	2.4	2.4	2.4	25	19.8	15.5	90.0	7.5 6.1	48.0	306.9	589.7	8.3	6.5	6.46 0	.878 0.8	378 17.388	5.76	1769	0.86	20	Α	G		2165		12.82	Yes	20.99	6443	1.64 1.2E-	03 1	1 in 1053

Table A.1 Run 1 Page 2 16471.21 Pillar Stability Analysis

Table A.1: Pillar Stability Analysis

Run 1: Pillars As Measured

Akalan Projects

18/10/16

Lake Macquarie Private Hospital Northern Expansion O'Brien Street, Gateshead NSW Pillar formula Project: Location: Client: Date: Sheet:

Analysis Assumptions: 16471.21 Calculations by JAW

Project Number

k	Key to Co	olour C	Coding	of Fac	tors of	Safety	/ Wic	<u>lth: He</u>	ight R	<u>atios</u>	
	4.50	Crooto	r than 2 O						_		

10 00	to a country or ractors or carety r	riatii: rioigiit riatioo
4.50	Greater than 3.0	
2.40	Between 2.2 and 3.0	
2.10	Between 1.8 and 2.2	Indicating Pillar Located within Project Angle of Dra
1.70	Between 1.5 and 1.8	Indicating Pillar Located beneath site
1.20	Less than 1.5	

Analysis	Comment	Depth	Panel Width/Span	Seam	Working	Pillar Height	t Unit	Pillar D	etails		adway Det	Extract.	Pillar	Total	w1/	w2/H Width	/ V	Vidth Mod	lifier	Pillar	Pillar	Proportion	Abutment		Abutment	Shed	Abutment	Pillar	Pillar			Power			Probability
ld:			(Longwall only)	Thickness	Section	Section	Weigth	Width	Length Interr	al		Ratio	Area	Area H	leight H	Height Heigh	t		wΘ	Stress	Load	Abutment	Angle	Abut (A)	Loading	Load	Load	Stress (MPa)	Stress		Strength	"Ultimate"	FoS	Probability	of Failure
		D			Н	Н	γ	w1	w2 Angl	e	b1 b2			F	Ratio I	Ratio Ratio	Θ_0	Θ	Effective	(Tributary)	(Tributary)	transfer	۰	Yield (Y)	Type		Received	("Yield")	("Abut")	Squat		Load	1	of Failure	NSW Power
		(m)	(m)	(m)	(m)	(m)	(kN/m ³)	(m)	(m) (°)		(m) (m)	(%)	m ³	m ³	w1/H	w2/H			Width	(MPa)	MN	R		(?)	M,T,G	MN	MN	$\phi_g = 0.7$	(MPa)		(MPa)	MN	$\perp \perp \perp$		Formulae
B66	Double Goaf Loading	119.5	45.0	2.4	2.4	2.4	25	24.7	16.2 90.0)	5.5 5.0	37.5	400.1	640.2	10.3	6.8 6.75	0.792	0.792	19.567	4.78	1913	0.90	20	Α	G		2113		10.06	Yes	27.21	10888	2.70	2.5E-10	1 in 1000000
B67	Tailgate Loading	119.0	45.0	2.4	2.4	2.4	25	24.7	16.2 90.0)	5.5 5.2	38.1	400.1	646.3	10.3	6.8 6.75	0.792	0.792	19.567	4.81	1923	0.90	20	Α	T		1803		9.31	Yes	27.21	10888	2.92	1.1E-11	1 in 1000000
B68	Rotated Panel / Double Goaf	120.0	45.0	2.4	2.4	2.4	25	16.0	27.0 90.0)	5.2 5.8	37.9	432.0	695.4	6.7	11.3 6.67	1.256	1.256	20.093	4.83	2086	0.76	20	Α	G		3287		12.44	Yes	19.99	8636	1.61	1.4E-03	1 in 705
B69	Rotated Panel / Double Goaf	120.0	45.0	2.4	2.4	2.4	25	16.0	27.0 90.0)	5.2 5.8	37.9	432.0	695.4	6.7	11.3 6.67	1.256	1.256	20.093	4.83	2086	0.76	20	Α	G		3287		12.44	Yes	19.99	8636	1.61	1.4E-03	1 in 705
B70	Rotated Panel / Double Goaf	120.0	45.0	2.4	2.4	2.4	25	16.0	27.0 90.0)	5.2 5.6	37.5	432.0	691.1	6.7	11.3 6.67	1.256	1.256	20.093	4.80	2073	0.76	20	Α	G		3267		12.36	Yes	19.99	8636	1.62	1.3E-03	1 in 801
B71	Rotated Panel / Double Goaf	120.0	45.0	2.4	2.4	2.4	25	16.0	27.0 90.0)	5.2 5.7	37.7	432.0	693.2	6.7	11.3 6.67	1.256	1.256	20.093	4.81	2080	0.76	20	Α	G		3277		12.40	Yes	19.99	8636	1.61	1.3E-03	1 in 751
B72	Rotated Panel / Double Goaf	120.0	45.0	2.4	2.4	2.4	25	16.0	27.0 90.0)	5.2 5.7	37.7	432.0	693.2	6.7	11.3 6.67	1.256	1.256	20.093	4.81	2080	0.76	20	Α	G		3277		12.40	Yes	19.99	8636	1.61	1.3E-03	1 in 751
B73	Rotated Panel / Double Goaf	120.0	45.0	2.4	2.4	2.4	25	16.0	27.0 90.0)	5.2 5.9	38.1	432.0	697.5	6.7	11.3 6.67	1.256	1.256	20.093	4.84	2092	0.76	20	Α	G		3297		12.48	Yes	19.99	8636	1.60	1.5E-03	1 in 662
B74	Double Goaf Loading	118.2	45.0	2.4	2.4	2.4	25	25.3	15.5 90.0)	5.5 5.3	38.8	392.2	640.6	10.5	6.5 6.46	0.760	0.760	19.223	4.83	1893	0.91	20	Α	G		2043		10.04	Yes	27.67	10849	2.76	1.2E-10	1 in 1000000
B75	Double Goaf Loading	118.0	45.0	2.4	2.4	2.4	25	25.1	15.5 90.0)	5.5 5.8	40.3	389.1	651.8	10.5	6.5 6.46	0.764	0.764	19.165	4.94	1923	0.91	20	Α	G		2087		10.31	Yes	27.39	10655	2.66	4.9E-10	1 in 1000000
B76	Maingate Loading	117.0	45.0	2.4	2.4	2.4	25	26.4	15.6 90.0)	5.5 5.3	38.2	411.8	666.7	11.0	6.5 6.50	0.743	0.743	19.611	4.74	1950	0.92	20	Α	M		1090		7.38	Yes	29.30	12067	3.97	3.1E-18	1 in 1000000
B77	Rotated panel / Maingate Loading	118.0	45.0	2.4	2.4	2.4	25	15.4	27.7 90.0)	5.7 5.3	38.7	426.6	696.3	6.4	11.5 6.42	1.285	1.285	19.795	4.82	2054	0.76	20	Α	M		1440		8.19	Yes	19.55	8340	2.39	2.4E-08	1 in 1000000
B78	Rotated panel / Maingate Loading	119.0	45.0	2.4	2.4	2.4	25	15.3	27.3 90.0		5.6 5.3	38.7	417.7	681.3	6.4	11.4 6.38	1.282	1.282	19.610	4.85	2027	0.75	20	Α	M		1423		8.26	Yes	19.41	8109	2.35	4.1E-08	1 in 1000000
B79	Rotated panel / Maingate Loading	120.0	45.0	2.4	2.4	2.4	25	15.5	27.3 90.0		5.4 5.3	37.9	423.2	681.3	6.5	11.4 6.46	1.276	1.276	19.773	4.83	2044	0.75	20	Α	М		1428		8.20	Yes	19.59	8288	2.39	2.4E-08	1 in 1000000
B80	Rotated panel / Maingate Loading	121.0	45.0	2.4	2.4	2.4	25	15.5	27.3 90.0		5.7 5.3	38.8	423.2	691.1	6.5	11.4 6.46	1.276	1.276	19.773	4.94	2091	0.76	20	Α	М		1463		8.40	Yes	19.59	8288	2.33	5.3E-08	1 in 1000000
B81	Rotated panel / Maingate Loading	122.0	45.0	2.4	2.4	2.4	25	15.5	27.3 90.0)	5.6 5.3	38.5	423.2	687.9	6.5	11.4 6.46	1.276	1.276	19.773	4.96	2098	0.75	20	Α	M		1467		8.42	Yes	19.59	8288	2.32	5.9E-08	1 in 1000000
B82	Rotated panel / Maingate Loading	123.0	45.0	2.4	2.4	2.4	25	15.5	27.3 90.0		5.6 5.3	38.5	423.2	687.9	6.5	11.4 6.46	1.276	1.276	19.773	5.00	2115	0.75	20	Α	M		1479		8.49	Yes	19.59	8288	2.31	7.7E-08	1 in 1000000
B83		113.0		2.4	2.4	2.4	25	13.6	9.9 90.0)	5.4 6.2	56.0	134.6	305.9	5.7	4.1 4.13	0.843	0.859	11.679	6.42	864	0.72	21	Α	M		89		7.08	Yes	14.47	1948	2.04	3.4E-06	1 in 450037
B84		113.5		2.4	2.4	2.4	25	14.0	9.6 90.0)	5.6 6.2	56.6	134.4	309.7	5.8	4.0 4.00	0.814	0.823	11.521	6.54	879	0.74	22	Α	M		92		7.23	Yes	14.45	1942	2.00	6.4E-06	1 in 215774
B85		113.8		2.4	2.4	2.4	25	13.8	10.0 90.0)	5.4 5.3	53.0	138.0	293.8	5.8	4.2 4.17	0.840	0.853	11.766	6.06	836	0.73	23	Α	М		85		6.67	Yes	14.56	2009	2.18	4.6E-07	1 in 1000000

16471.21 Pillar Stability Analysis Table A.1 Run 1 Page 3

Table A.2: Pillar Stability Analysis

Run 2: Remove Crushed Pillars from Run 1

Akalan Projects

18/10/16

Lake Macquarie Private Hospital Northern Expansion O'Brien Street, Gateshead Project: Client: Location: Date:

NSW Pillar formula Sheet: 2

Analysis Assumptions: Project Number 16471.21 Calculations by JAW

Key to Colour Coding of Factors of Safety / Width: Height Ratios Greater than 3.0 Between 2.2 and 3.0 2.10 Between 1.8 and 2.2 1.70 Between 1.5 and 1.8 Indicating Pillar Located within Project Angle of Draw Indicating Pillar Located beneath site 1.20 Less than 1.5

Analysis	Comment	Depth	Panel Width/Span	Seam	Working	Pillar Height	Unit	Pillar [Details	i	adway Deta	Extract.	Pillar	Total	w1/	w2/H	Width/	Widt	th Modifier	Pillar	Pillar	Proportion	Abutment		Abutment	Shed	Abutment	Pillar	Pillar			Power L	_aw	F	Probability
ld:			(Longwall only)	Thickness	Section	Section	Weigth	Width	ΙĭΙ	Internal		Ratio	Area	Area	Height	-	- 1	_	wΘ	Stress	Load	Abutment	1	Abut (A)	Loading	Load	Load	Stress (MPa)	Stress		Strength	1	FoS Probal	1	of Failure
		(m)	(m)	(m)	H (m)	H (m)	γ (kN/m³)	w1 (m)	w2 (m)	Angle (°)	b1 b2 (m) (m)	(%)	m ³	m ³		Ratio w2/H	Ratio	Θ_0	Effective Width	(Tributary)	(Tributary MN	transfer	l °	Yield (Y)	Type M,T,G	MN	Received MN	("Yield") φ _o = 0.7	("Abut") (MPa)	Squat	(MPa)	Load MN	of Fai		ISW Power Formulae
A1		127.7	()	2.4	2.4	2.4	25	18.6	31.0	- \/	4.9 5.2	()	576.6	850.7	7.8	12.9	7.75	1.250 1.	250 23.250	4.71	2716	0.79	20	(-/	,.,0			Ψχ σ.:	(4)	Yes	23.31	13443	4.95 2.3E-		in 1000000
A2		126.7		2.4	2.4	2.4	25	17.4	31.5		5.2 5.1	33.7	548.1			13.1	7.25		288 22.417	4.78	2619	0.77	20							Yes	22.00	12057	4.60 3.4E-		in 1000000
A3 A4	Tailgate Loading	126.7 124.6	22.0	2.4	2.4	2.4	25 25	19.1 16.8	31.4 31.4		5.3 5.4 5.4 5.1	33.2 34.9	599.7 527.5	897.9 810.3		13.1	7.96		244 23.752 303 21.889	4.74 4.78	2843 2523	0.81	20	A	Т		1868		8.32	Yes Yes	23.99 21.34	14388 11259	5.06 4.7E- 2.56 1.9E-		in 1000000 in 1000000
A5		124.1		2.4	2.4	2.4	25	16.5	31.1		5.4 5.2	35.5		795.0		13.0	6.88		307 21.561	4.81	2466	0.77	20		-					Yes	21.00	10777	4.37 9.8E-		in 1000000
A6		123.6		2.4	2.4	2.4	25	17.7	26.9		4.8 5.3					11.2	7.38		206 21.351	4.70	2238	0.78	20							Yes	21.66	10314	4.61 3.2E-		in 1000000
A7 A8		123.1 122.7		2.4	2.4	2.4	25 25	17.2 16.7	26.5 26.5		5.2 5.4 5.4 5.8	36.2				11.0	7.17		213 20.860 227 20.488	4.82 4.95	2199 2189	0.78	20							Yes	21.08	9606 9106	4.37 1.0E- 4.16 2.0E-		in 1000000 in 1000000
A9		121.4		2.4	2.4	2.4	25	17.0	27.6		5.0 5.3					11.5	7.08		238 21.040	4.68	2196	0.77	20							Yes	21.04	9872	4.50 1.6E-		in 1000000
A10		123.9		2.4	2.4	2.4	25	17.3	17.4		5.3 4.9	40.3	301.0			7.3	7.21		.003 17.350	5.19	1561	0.78	20							Yes	19.24	5793	3.71 1.3E-		in 1000000
A11 A12		124.2 123.2		2.4	2.4	2.4	25 25	17.0 16.7	17.3 17.1		5.3 5.0 5.1 5.2	40.9		497.3 486.1	7.1	7.2	7.08		.009 17.149 .012 16.898	5.25 5.24	1544 1498	0.77	20							Yes	18.96 18.65	5575 5326	3.61 5.4E- 3.56 1.2E-		in 1000000 in 1000000
A12		123.2		2.4	2.4	2.4	25	17.0	17.0		5.3 5.1	41.4		492.8		7.1	7.08		.000 17.000	5.24	1515	0.78	20							Yes	18.87	5454	3.60 6.4E-		in 1000000
A14		121.9		2.4	2.4	2.4	25	17.0	17.1	90.0	5.5 5.7	43.3	290.7	513.0	7.1	7.1	7.08	1.003 1.	.003 17.050	5.38	1563	0.78	20							Yes	18.90	5494	3.51 2.2E-	15 1 i	in 1000000
A15 A16		128.8		2.4	2.4	2.4	25	24.5	38.0		4.2 5.1 5.4 5.3	24.7		1237.0		15.8	10.21		216 29.792	4.28	3984	0.87	20							Yes	33.43	31125	7.81 3.0E-		in 1000000
A17		128.9 128.8		2.4	2.4	2.4	25 25	18.6 20.0	31.5 31.7		5.4 5.3	33.7 33.4		883.2 951.3		13.1	8.33		257 23.389 226 24.526	4.86 4.83	2846 3064	0.80	20							Yes	23.39 25.21	13702 15982	4.81 1.6E- 5.22 5.0E-		in 1000000 in 1000000
A18		127.3		2.4	2.4	2.4	25	19.1	31.7		5.2 5.4					13.2	7.96		248 23.837	4.74	2869	0.80	20							Yes	24.03	14552	5.07 4.0E-		in 1000000
A19		125.9		2.4	2.4	2.4	25	17.0	31.5		5.2 5.5	34.8		821.4		13.1	7.08		299 22.082	4.83	2585	0.77	20							Yes	21.57	11549	4.47 2.4E-		in 1000000
A20 A21		125.1 124.4		2.4	2.4	2.4	25 25	16.3 17.2	31.5 16.0		5.3 5.4 5.3 5.0	35.6 41.8		797.0 472.5		6.7			318 21.483 .964 16.578	4.85 5.34	2493 1469	0.76	20					***************************************		Yes Yes	20.85 18.74	10704 5159	4.29 2.9E- 3.51 2.3E-		in 1000000 in 1000000
A22		123.9		2.4	2.4	2.4	25	17.2	16.4		5.2 5.0	41.2				6.8			976 16.790	5.27	1485	0.78	20			***************************************				Yes	18.87	5322	3.58 8.0E-		in 1000000
A23		123.6		2.4	2.4	2.4	25	17.4	16.4		4.8 5.3	40.8		481.7		6.8			970 16.885	5.22	1489	0.77	20							Yes	19.04	5433	3.65 3.1E-		in 1000000
A24 A25		123.0 121.9		2.4	2.4	2.4	25 25	17.4 17.4	16.4 16.4		5.3 5.2 5.3 5.3	41.8		490.3		6.8			.970 16.885 .970 16.885	5.28 5.26	1508 1501	0.78	20							Yes Yes	19.04 19.04	5433 5433	3.60 6.0E- 3.62 4.8E-		in 1000000 in 1000000
A26	Tailgate Loading	129.9	22.0	2.4	2.4	2.4	25	20.5	23.8		5.4 6.2	37.2				9.9	8.54		074 22.027	5.17	2523	0.83	20	Α	T		1610		8.47	Yes	24.32	11868	2.87 2.3E-		in 1000000
A27	Tailgate Loading	130.2	22.0	2.4	2.4	2.4	25	22.5	40.1		5.6 6.2	30.7	902.3	1301.0	9.4	16.7	9.38	1.281 1.	281 28.826	4.70	4236	0.86	20	Α	Т		2492		7.46	Yes	30.23	27274	4.05 9.2E-		in 1000000
A28 A29		128.8 128.2		2.4	2.4	2.4	25 25	23.4 10.2	25.8 25.4		5.4 5.3 5.5 5.3	32.6 46.2	603.7	895.7 482.0		10.8	9.75		.049 24.541 .160 11.829	4.78 5.96	2884 1545	0.87	20							Yes	28.91 14.53	17453 3765	6.05 3.0E- 2.44 1.2E-		in 1000000 in 1000000
A29 A30		127.3		2.4	2.4	2.4	25	13.5	25.7		5.5 5.3	41.1		589.0		10.6	5.63		268 17.112	5.40	1874	0.61	20							No Yes	17.56	6092	3.25 9.7E-		in 1000000
A31		125.3		2.4	2.4	2.4	25	17.4	16.7	90.0	5.4 5.2	41.8	290.6	499.3	7.3	7.0	6.96	0.979 0.	979 17.043	5.38	1564	0.78	20							Yes	19.13	5558	3.55 1.2E-		in 1000000
A32		124.5		2.4	2.4	2.4	25	17.8	16.7		5.4 5.1	41.2		505.8	7.4	7.0			968 17.232	5.30	1574	0.79	20		-					Yes	19.48	5791	3.68 2.0E-		in 1000000
A33 A34		125.9 122.8		2.4	2.4	2.4	25 25	17.3 17.3	16.6 16.1		5.6 5.0 5.5 5.2	41.9 42.6		494.6 485.6	7.2	6.9			979 16.943 .964 16.678	5.42 5.35	1557 1491	0.78	20							Yes Yes	19.01 18.86	5460 5253	3.51 2.4E- 3.52 1.9E-		in 1000000 in 1000000
A35		121.9		2.4	2.4	2.4	25	17.3	16.9		5.3 5.2	41.5		499.5		7.0			988 17.098	5.20	1521	0.78	20							Yes	19.10	5584	3.67 2.3E-		in 1000000
A36		126.5		2.4	2.4	2.4	25	20.0	16.1		5.4 5.5	41.3		548.6		6.7			892 17.839	5.39	1735	0.82	20							Yes	21.43	6901	3.98 2.8E-		in 1000000
A37 A38		125.1 124.0		2.4	2.4	2.4	25 25	17.8 17.6	16.1 15.8		5.2 5.5 5.1 5.6	42.3 42.8		496.8		6.7			.950 16.907 .946 16.651	5.42 5.41	1554 1505	0.78	20					, , , , , , , , , , , , , , , , , , , ,		Yes Yes	19.29 19.02	5529 5290	3.56 1.1E- 3.51 2.2E-		in 1000000 in 1000000
A39		123.6		2.4	2.4	2.4	25	17.6	16.0		5.3 5.4	42.5		490.1		6.7			952 16.762	5.38	1514	0.79	20	***************************************						Yes	19.09	5375	3.55 1.3E-		in 1000000
A40		121.8		2.4	2.4	2.4	25	17.6	16.4		5.3 5.5	42.4		501.5		6.8	6.83		965 16.979	5.29	1527	0.79	20							Yes	19.21	5545	3.63 4.0E-		in 1000000
A41 A42	Double Goaf Loading	130.0 127.3	45.0	2.4	2.4	2.4	25 25	28.0	32.6 23.9		5.5 5.7 5.3 5.1	28.9 34.2		1283.1 762.7		13.6	11.67 8.75		.076 30.125 .065 22.356	4.57 4.84	4170 2427	0.92	20	Α	G		4270		9.25	Yes Yes	39.07 24.99	35659 12544	4.23 7.8E- 5.17 1.0E-		in 1000000 in 1000000
A43		126.8		2.4	2.4	2.4	25	16.3	22.1		5.5 5.7	40.6		606.0		9.2	6.79		151 18.762	5.33	1922	0.76	20							Yes	19.46	7009	3.65 3.2E-		in 1000000
A44		125.1		2.4	2.4	2.4	25	17.8	16.4		5.0 5.6	41.8		501.6		6.8			959 17.071	5.37	1569	0.78	20							Yes	19.39	5660	3.61 5.6E-		in 1000000
A45 A46		124.3 124.2		2.4	2.4	2.4	25 25	17.8 17.8	16.4 16.4		5.1 5.5 5.4 5.4	41.8 42.3		501.5 505.8	7.4	6.8			.959 17.071 .959 17.071	5.34 5.38	1558 1570	0.78	20							Yes Yes	19.39 19.39	5660 5660	3.63 3.9E- 3.60 6.0E-		in 1000000 in 1000000
A47		122.0		2.4	2.4	2.4	25	17.8	16.7		5.4 5.3	41.8		510.4		7.0			968 17.232	5.24	1556	0.79	20							Yes	19.48	5791	3.72 1.1E-		in 1000000
A48		128.2		2.4	2.4	2.4	25	18.9	29.1		6.0 6.0	37.1		874.0		12.1	7.88		213 22.916	5.09	2801	0.81	20							Yes	23.39	12863	4.59 4.0E-	~~~~	in 1000000
A49		126.8		2.4	2.4	2.4	25	33.6	44.0		5.5 6.0			1955.0		18.3			134 38.103	4.19	6199	0.97	20							Yes	55.75	82417	13.30 1.6E-		in 1000000
A50 A51		128.2 125.1		2.4	2.4	2.4	25 25	17.8 13.8	43.0 16.6		5.1 6.2 6.5 5.2	48.2		1126.7 442.5		17.9 6.9			.414 25.178 .084 14.961	4.72 6.04	3611 1384	0.78	20							Yes	23.64 16.46	18093 3770	5.01 9.7E- 2.72 1.9E-		in 1000000 in 1000000
A52		126.7		2.4	2.4	2.4	25	33.0	13.8	90.0	6.5 6.0	41.8	455.4	782.1	13.8	5.8		0.590 0.	590 19.462	5.44	2476	0.97	20							Yes	38.61	17583	7.10 8.4E-	38 1 ir	in 1000000
A53 A54	Tailgate Loading	130.2	22.0	2.4	2.4	2.4	25	14.7 14.7	39.0		6.5 6.6	40.7		966.7		16.3	6.13		453 21.352	5.49	3147	0.74	20	Α	Т		2454		9.77	Yes	20.03		2.05 3.1E-		1 in 495476
A54 A55		129.4 127.3		2.4	2.4	2.4	25 25	14.7	43.3 67.0		6.5 6.5 6.4 6.0	39.7 34.7				18.0 27.9			.493 21.949 .618 25.570	5.37 4.87	3416 5158	0.74	20							Yes Yes	20.31	12927 23810	3.78 4.4E- 4.62 2.8E-		in 1000000 in 1000000
A56		124.8		2.4	2.4	2.4	25	13.0	14.5	90.0	6.2 8.8	57.9	188.5	447.4	5.4	6.0	5.42	1.055 1.	044 13.568	7.40	1396	0.71	20					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Yes	15.52	2926	2.10 1.6E-	-06 1 ir	in 1087287
A57		127.9		2.4	2.4	2.4	25	12.7	40.3		6.4 6.1	42.2				16.8			377 17.493	5.54	2834	0.70	20							Yes	17.64	9027	3.19 2.5E-		in 1000000
A58 A59	Double Goaf Loading	125.1 130.3	22.0	2.4	2.4	2.4	25 25	15.0 15.1	33.1 26.9		6.7 6.5 6.2 5.6			859.3 692.3		13.8			376 20.644 281 19.342	5.41 5.55	2688 2255	0.76	20	Α	G		2059		10.62	Yes Yes	19.80 19.20	9832 7797	3.66 2.7E- 1.81 1.0E-		in 1000000 1 in 11138
A60	Tailgate Loading	129.8	22.0	2.4	2.4	2.4	25	14.6	38.6		6.2 6.0			927.7		16.1			451 21.186	5.34	3010	0.73	20	Α	T		2391		9.58	Yes	19.91		2.08 2.1E-		1 in 781711
A61		132.3		2.4	2.4	2.4	25	14.6	43.6		6.3 6.3			1042.9		18.2	6.08		498 21.875	5.42	3449	0.73	20							Yes	20.24	12881	3.73 9.2E-		in 1000000
A62 A63		127.3 130.0		2.4	2.4	2.4	25 25	14.6 12.2	26.5 52.9		6.4 6.1 6.3 5.9	43.5		684.6 1087.8		11.0	5.08		290 18.827 401 17.093	5.63 5.48	2179 3535	0.74	20					***************************************		Yes Yes	18.75 17.40	7253 11229	3.33 3.1E- 3.18 2.8E-		in 1000000 in 1000000
A64		127.3		2.4	2.4	2.4	25	12.2	50.8		6.2 6.3			1050.6		21.2			394 17.002	5.40	3344	0.68	20	***************************************						Yes	17.35	10754	3.22 1.6E-		in 1000000
A65	Double Goaf Loading	125.1	45.0	2.4	2.4	2.4	25	20.7	24.5		88.9 5.3					10.2			084 22.440	20.14	10215		20	A	G		3158		26.37	Yes	24.75	12551	4.0E		#NUM!
A66 A67	Maingate Loading Maingate Loading	126.1 127.9	45.0 45.0	2.4 2.4	2.4 2.4	2.4 2.4	25 25	15.8 16.2	24.5 24.3		72.2 5.5 37.2 5.7			2640.0 1602.0		10.2 10.1			216 19.211 200 19.440	21.50 13.01	8323 5122	1.15 1.00	20 20	A A	M M		5758 3419		36.37 21.70	Yes Yes	19.44 19.76	7525 7778	4.0E=		#NUM! #NUM!
A68	Maingate Loading Maingate Loading	122.1	22.0	2.4	2.4	2.4	25				5.3 5.1				6.7				377 22.039	4.65	2633	0.76	20	A	M		1150		6.68	Yes	20.96	11869	3.14 4.9E-		in 1000000
A69	- V	122.1		2.4	2.4	2.4	25	17.4	19.4	90.0	5.6 6.5	43.3	337.6	595.7	7.3	8.1	7.25	1.054 1.	054 18.346	5.39	1818	0.79	20							Yes	19.86	6704	3.69 1.8E-	-16 1 ir	in 1000000
A70 A71		122.1		2.4	2.4	2.4	25	16.9	19.2		5.4 6.5		-	573.1		8.0	7.04		064 17.977	5.39	1749	0.78	20							Yes	19.36	6282	3.59 7.2E-		in 1000000
A/1 A72		121.2 120.6		2.4	2.4	2.4	25 25	16.9 16.9	19.2 19.2		4.9 6.5 5.0 6.5	42.1 42.3		560.3 562.8		8.0	7.04		.064 17.977 .064 17.977	5.23 5.23	1698 1697	0.77	20							Yes Yes	19.36 19.36	6282 6282	3.70 1.5E- 3.70 1.5E-		in 1000000 in 1000000
A73	Maingate Loading	124.2	22.0	2.4	2.4	2.4	25	16.5	31.9		5.3 4.7			797.9		13.3			318 21.750	4.71	2477	0.76	20	Α	M		1068		6.74	Yes	21.09	11103	3.13 5.3E-		in 1000000

Table A.2: Pillar Stability Analysis

Run 2: Remove Crushed Pillars from Run 1

Akalan Projects

18/10/16

Lake Macquarie Private Hospital Northern Expansion O'Brien Street, Gateshead Project: Client: Location: Date:

NSW Pillar formula Sheet: 2 16471.21 Calculations by JAW

Analysis Assumptions: Project Number

Key to Colour Coding of Factors of Safety / Width: Height Ratios

Greater than 3.0 Between 2.2 and 3.0 2.10 Between 2.2 and 3.0
2.10 Between 1.8 and 2.2
1.70 Between 1.5 and 1.8
1.20 Less than 1.5

Indicating Pillar Located within Project Angle of Draw Indicating Pillar Located beneath site

Analysis	Comment	Depth	Panel Width/Span	Seam	Working	Pillar Height	Unit	Pillar Details		adway De	eta Extract.	Pillar Tota	al w1/	w2/H Wid	ith/	Width Mod	difier	Pillar	Pillar	Proportion	Abutment		Abutment	Shed	Abutment	Pillar	Pillar			Power Law		Pr	robability
ld:		_	(Longwall only)	Thickness	Section	Section	Weigth	Width Length	Internal		Ratio	Area Are	-	Height Hei	· 1		wΘ	Stress	Load	Abutment	Angle	Abut (A)	Loading	Load	Load	Stress (MPa)	Stress		Strength '			´	f Failure
		(m)	(m)	(m)	(m)	(m)	γ (kN/m³)	w1 w2 (m) (m)	Angle (°)	b1 b2 (m) (m)	(%)	m³ m³	Ratio w1/H	Ratio Ra w2/H	tio Θ_0	₀ Θ	Effective	(Tributary) (MPa)	(Tributary) MN) transfer		Yield (Y)	Type M.T.G	MN	Received	("Yield") φ _o = 0.7	("Abut") (MPa)	Squat	(MPa)	Load MN	of Failu		SW Power formulae
A74		122.3	(III)	2.4	2.4	2.4	25	16.4 17.4	90.0	5.5 5.2		285.4 494		7.3 6.8	33 1.03	30 1.030		5.30	1513	0.77	20	(:)	IVI, I , O	IVIIV	IVIIN	Ψg- 0.1	(Wil a)	Yes	18.49	5276 3.4	9 3.2E-1		1000000
A75		121.8		2.4	2.4	2.4	25	16.6 16.9	90.0	5.2 5.4		280.5 486		7.0 6.9	1.00	09 1.009	16.749	5.28	1480	0.77	20							Yes	18.51	5194 3.5	1 2.4E-1		1000000
A76		121.8		2.4	2.4	2.4	25	16.6 17.1	90.0	4.8 5.7		283.9 487		7.1 6.9		15 1.015		5.23	1486	0.76	20							Yes	18.57	5271 3.5	5 1.3E-1		1000000
A77	Majorata Loodina	121.2 121.8	22.0	2.4	2.4	2.4	25 25	16.6 17.0 16.5 29.9	90.0	5.0 5.0 5.3 4.4		282.2 475 193.4 747		7.1 6.9 12.5 6.8	1.01 38 1.28		16.798	5.10	1440 2277	0.76	20	A	M		005		6.61	Yes	18.54	5233 3.6	3 3.9E-1 5 3.9E-1		1000000
A79	Maingate Loading	121.0	22.0	2.4	2.4	2.4	25	16.5 29.9	90.0	6.6 5.3		285.1 522		7.3 6.	75 1.04		21.265 16.871	4.62 5.58	1591	0.77	20 20	Α	IVI		985		0.01	Yes Yes	20.85 18.38	10288 3.1 5241 3.2	9 5.2E-1		1000000 1000000
A80	Tailgate Loading / Double Goaf	125.6	45.0	2.4	2.4	2.4	25	18.5 31.5	90.0	23.2 5.0		82.8 1522		13.1 7.	71 1.26		23.310	8.20	4779	0.98	20	A	G		3888		14.87	Yes	23.27	13558 1.5	6 2.3E-0		1 in 409
A81		121.8		2.4	2.4	2.4	25	15.4 17.5	90.0	5.2 5.1		269.5 465	.6 6.4	7.3 6.	1.06	64 1.064	16.383	5.26	1418	0.74	20							Yes	17.75	4785 3.3	8 1.6E-1	14 1 in	1000000
B1		121.2		2.4	2.4	2.4	25	17.2 15.9	90.0	5.4 6.7		273.5 510		6.6		61 0.961		5.66	1548	0.78	20							Yes	18.71	5118 3.3	1 4.3E-1		1000000
B2		120.6		2.4	2.4	2.4	25	16.8 15.9	90.0	5.4 6.7 5.4 6.7		267.1 501.		6.6 6.0		72 0.972		5.66	1513	0.78	20							Yes	18.39	4911 3.2	5 1.0E-1		1000000
B3 B4		120.1 120.2		2.4	2.4	2.4	25 25	16.0 15.4 17.3 15.7	90.0	5.4 5.0		246.4 472. 271.6 469.		6.4 6. 4 6. 5 6. 5	12 0.98	81 0.981 52 0.952	15.694	5.76 5.20	1420 1412	0.76	20							Yes Yes	17.62 18.73	4342 3.0 5088 3.6	6 1.5E-1		1000000
B5		119.6		2.4	2.4	2.4	25	16.9 15.8	90.0	5.4 5.0		267.0 463		6.6 6.		66 0.966		5.19	1387	0.78	20		***************************************	***************************************		***************************************		Yes	18.44	4923 3.5	5 1.3E-1		1000000
В6		119.2	***************************************	2.4	2.4	2.4	25	17.3 16.1	90.0	5.4 5.0	41.8 2	278.5 479		6.7 6.	71 0.96	64 0.964	16.678	5.12	1427	0.79	20							Yes	18.86	5253 3.6	8 2.0E-1		1000000
B7		118.6		2.4	2.4	2.4	25	18.3 24.6	90.0	5.4 5.2		150.2 706		10.3 7.0	3 1.14	47 1.147	20.987	4.65	2094	0.81	20							Yes	21.90	9860 4.7	1 7.5E-2		1000000
B8		119.0		2.4	2.4	2.4	25	18.1 24.9	90.0	5.4 5.2		150.7 707		10.4 7.		58 1.158		4.67	2104	0.80	20							Yes	21.74	9799 4.6	6 1.6E-2		1000000
B9 B10		120.0		2.4	2.4	2.4	25	18.0 24.9	90.0	5.4 5.2 5.4 5.2		148.2 704		10.4 7.	30 1.16 33 1.13	61 1.161		4.71	2113	0.80	20							Yes	21.64	9697 4.5	9 4.2E-2 6 3.7E-2		1000000
B11	Maingate Loading	121.3 121.8	22.0	2.4	2.4	2.4	25 25	18.8 24.7 15.2 40.0	90.0	6.1 4.8		64.4 723 608.0 954		10.3 7. 3		49 1.449	21.350	4.73 4.78	2194 2906	0.81	20	Α	M		1310		6.93	Yes Yes	22.48	10439 4.7 12498 2.9	6 5.9E-		1000000
B12	gate _outing	121.0		2.4	2.4	2.4	25	18.6 19.0	90.0	5.4 5.2		353.4 580.		7.9 7.	75 1.01		18.798	4.70	1757	0.70	20	- ` `	.,,		.010		0.00	Yes	20.92	7393 4.2	1 1.0E-1		1000000
B13		119.7		2.4	2.4	2.4	25	16.8 18.7	90.0	5.4 5.2	40.8	314.2 530		7.8 7.	00 1.05		17.699	5.05	1588	0.78	20							Yes	19.15	6017 3.7	9 4.1E-1		1000000
B14		118.4		2.4	2.4	2.4	25	17.2 18.7	90.0	5.4 5.2		321.6 540		7.8 7.	1.04		17.919	4.97	1599	0.79	20							Yes	19.50	6273 3.9	2 6.0E-		1000000
B15		117.7		2.4	2.4	2.4	25	17.3 19.5	90.0	5.4 5.2		337.4 560		8.1 7.	1.06		18.334	4.89	1650	0.79	20							Yes	19.79	6677 4.0	5 1.0E-1		1000000
B16 B17		119.0 119.7	 	2.4	2.4	2.4	25 25	63.4 42.3 16.1 31.1	90.0	5.4 5.2 5.5 5.7		681.8 3268 500.7 794		17.6 17 .		00 0.800 18 1.318		3.63 4.75	9722 2379	0.77	20							Yes	173.66 20.61	465736 47 . 10318 4 .3	90 8.0E-2 4 1.6E-2	-	1000000 1000000
B18	Tailgate Loading	119.7	22.0	2.4	2.4	2.4	25	16.7 31.1	90.0	5.6 5.7		519.4 820		13.0 6.	1.31		21.731	4.75	2460	0.77	20	Α	т		1803		8.21	Yes	21.20	11013 2.5	8 1.4E-0		1000000
B19	Maingate Loading	120.0	45.0	2.4	2.4	2.4	25	17.5 31.3	90.0	5.6 5.7		547.8 854		13.0 7.1	9 1.28		22.449	4.68	2564	0.80	20	A	M		1723		7.83	Yes	22.08	12096 2.8	2 4.6E-		1000000
B20	Maingate Loading	119.5	45.0	2.4	2.4	2.4	25	17.5 31.4	90.0	5.6 4.9		549.5 838		13.1 7.	1.28		22.474	4.56	2505	0.80	20	Α	М		1683		7.62	Yes	22.10	12141 2.9	0 1.5E-1		1000000
B21		119.3		2.4	2.4	2.4	25	16.8 31.1	90.0	5.8 4.9		522.5 813		13.0 7.0	1.29		21.815	4.64	2427	0.79	20							Yes	21.31	11133 4.5	9 4.2E-2		1000000
B22		119.2		2.4	2.4	2.4	25	16.0 30.9	90.0	5.5 0.9		194.4 683		12.9 6.0		18 1.318		4.12	2037	0.77	20							Yes	20.49	10129 4.9	7 1.7E-2		1000000
B23 B24		119.1 118.2		2.4	2.4	2.4	25 25	13.2 15.0 12.9 10.3	90.0	5.7 5.6 5.7 5.4		198.0 389 132.9 292		6.3 5. 4.3 4.	1.06	64 1.053 88 0.910	13.898	5.85 6.49	1159 863	0.71	20 20							Yes Yes	15.74 14.41	3117 2.6 1915 2.2	9 3.1E-1 2 2.7E-0		1000000 1000000
B25		117.5		2.4	2.4	2.4	25	13.8 10.1	90.0	6.1 5.4		139.4 308		4.2 4.3		45 0.857		6.50	906	0.74	20					***************************************		Yes	14.60	2035 2.2	5 1.8E-0		1000000
B26		116.8		2.4	2.4	2.4	25	13.6 9.9	90.0	6.6 5.4		134.6 309		4.1 4.		43 0.859		6.70	902	0.74	20		,			, ,		Yes	14.47	1948 2.1			1000000
B27		116.0		2.4	2.4	2.4	25	14.0 9.6	90.0	6.1 5.4		134.4 301	.5 5.8	4.0 4.0	0.81	14 0.823	11.521	6.51	874	0.74	20							Yes	14.45	1942 2.2	2 2.6E-0	ງ7 1 in	1000000
B28		115.2		2.4	2.4	2.4	25	13.8 10.0	90.0	5.6 5.4		138.0 298		4.2 4.		40 0.853		6.23	860	0.73	20							Yes	14.56	2009 2.3	4 5.1E-0		1000000
B29		114.5		2.4	2.4	2.4	25	13.6 13.4	90.0	5.6 5.3 6.1 5.3		182.2 359		5.6 5.		93 0.993		5.64	1028	0.73	20							Yes	15.58	2840 2.7	6 1.1E-1		1000000
B30 B31		115.3 116.0		2.4	2.4	2.4	25 25	13.9 13.6 12.8 14.0	90.0	6.6 5.3		189.0 378. 179.2 374.		5.7 5. 8 5. 3		89 0.990 45 1.035		5.76 6.06	1090 1086	0.74	20					***************************************		Yes Yes	15.79 15.31	2985 2.7 2744 2.5	4 1.5E-1		1000000 1000000
B32		116.7	•	2.4	2.4	2.4	25	14.0 14.1	90.0	6.1 5.3		197.4 389		5.9 5.1			14.047	5.76	1138	0.74	20							Yes	15.98	3155 2.7	7 9.3E-1		1000000
B33		117.4		2.4	2.4	2.4	25	12.9 14.0	90.0	5.7 5.3	49.7	180.6 359	.0 5.4	5.8 5.3	38 1.04	41 1.032	13.316	5.83	1054	0.71	20							Yes	15.36	2775 2.6	3 6.9E-	10 1 in	1000000
B34		118.3		2.4	2.4	2.4	25	15.6 30.9	90.0	5.5 5.0	36.4	182.0 757	.5 6.5	12.9 6.	1.32	29 1.329	20.733	4.65	2240	0.76	20							Yes	20.11	9695 4.3	3 1.8E-2	20 1 in	1000000
B35		118.0		2.4	2.4	2.4	25	16.9 30.2	90.0	5.8 5.0		10.4 799		12.6 7.0	1.28		21.672	4.62	2357	0.79	20							Yes	21.30	10870 4.6	1 3.0E-2		1000000
B36 B37	Maingate Loading	118.1	45.0 45.0	2.4	2.4	2.4	25 25	17.3 29.9 17.3 30.6	90.0	5.6 5.0 5.7 4.5		517.3 799 529.4 807		12.5 7.1		67 1.267 78 1.278		4.56 4.47	2360 2367	0.80	20	A A	M M		1591 1597		7.64 7.49	Yes	21.68	11214 2.8 11526 2.9	4 3.6E-1		1000000
B38	Maingate Loading	117.3	45.0	2.4	2.4	2.4	25	17.0 30.6	90.0	5.8 4.5		520.2 800		12.8 7. 12.8 7. 12.8		86 1.286		4.47	2345	0.80	20	A	IVI		1597		7.49	Yes Yes	21.77	11160 4.7	6 3.6E-2		1000000 1000000
B39		115.9		2.4	2.4	2.4	25	12.8 11.2	90.0	5.7 4.9		143.4 297		4.7 4.0		33 0.948		6.02	863	0.71	20							Yes	14.64	2099 2.4	3 1.3E-0		1000000
B40		113.8		2.4	2.4	2.4	25	13.2 11.6	90.0	6.1 4.9	51.9	153.1 318	.5 5.5	4.8 4.8	0.93	35 0.946	12.486	5.92	906	0.73	20							Yes	14.91	2282 2.5	2 3.6E-0	ງ9 1 in	1000000
B41	Double Goaf Loading	121.0	45.0	2.4	2.4	2.4	25	17.0 37.8	90.0	5.4 5.0		642.6 958				80 1.380		4.51	2900	0.78	20	Α	G		4338		11.26	Yes	22.24	14290 1.9			n 144252
B42	Double Goaf Loading	122.0	45.0	2.4	2.4	2.4	25	18.1 30.0	90.0	5.3 4.8 5.8 4.6		543.0 814				47 1.247 26 1.326		4.57	2484	0.80	20	Α	G		3566		11.14	Yes	22.58	12262 2.0			n 338156
B43 B44	Double Goaf Loading Maingate Loading / Double Goaf	123.0 124.0	45.0 22.0	2.4	2.4	2.4	25 25	17.9 35.2 18.3 31.3	90.0	5.8 4.6		330.1 943 572.8 865		14.7 7.4		62 1.262		4.60 4.68	2901 2682	0.80	20	A	G		4123 2150	***************************************	11.15 8.44	Yes Yes	23.01	14499 2.0 13173 2.7			n 629304 n 1000000
B45	Tailgate Loading	125.0	45.0	2.4	2.4	2.4	25	17.1 16.6	90.0	5.0 11.		283.9 621				85 0.985		6.84	1941	0.77	20	A	Ŧ		2528		15.74	Yes	18.84	5348	4.0E+		#NUM!
B46	Tailgate Loading	128.0	22.0	2.4	2.4	2.4	25	21.6 15.8	90.0	10.0 5.4	49.1	341.3 669	.9 9.0	6.6 6.		45 0.845		6.28	2144	0.91	20	Α	Т		1119		9.56	Yes	23.08	7877 2.4			1000000
B47	Tailgate Loading	127.7	45.0	2.4	2.4	2.4	25	20.6 15.8	90.0	8.9 5.5		325.5 628		6.6 6.		68 0.868		6.16	2006	0.88	20	Α	Т		1971		12.22	Yes	21.96	7147 1.8	0 1.2E-0		in 9543
B48	Maingate Loading	126.0	45.0	2.4	2.4	2.4	25	9.2 12.3	90.0	11.0 6.0 5.0 6.1		113.2 369		5.1 3.		44 1.038		10.29	1164	0.73	20	A	M		941		18.61	No	13.03	1474	4.0E+		#NUM!
B49 B50	Rotated Panel / Double Goaf Maingate Loading / Double Goaf	125.0 123.0	22.0 45.0	2.4 2.4	2.4 2.4	2.4	25 25	13.0 8.2 24.8 15.2	90.0	5.0 5.9		106.6 257 377.0 628		3.4 3. 6.3 6.3		74 0.813 60 0.760		7.55 5.13	8 04 1933	0.68 0.89	20 20	A A	M G		368 2186		11.00 10.93	Yes Yes	13.67 26.81	1457 10106 2.4	4.0E+ 5 9.3E-0		#NUM! n 1000000
B51	Rotated Panel / Double Goaf	123.5	45.0	2.4	2.4	2.4	25	15.0 26.8	90.0	5.7 5.5		102.0 668		11.2 6.3		82 1.282		5.13	2064	0.89	20	A	G		3365		13.50	Yes	19.10	7678 1.4	1 1.3E-0		1 in 70
B52	Rotated Panel / Double Goaf	124.0	45.0	2.4	2.4	2.4	25	15.0 26.8	90.0	5.7 5.5		102.0 668				82 1.282		5.16	2073	0.74	20	A	G		3383	,	13.57	Yes	19.10	7678 1.4	1 1.4E-0		1 in 64
B53	Rotated Panel / Double Goaf	124.6	45.0	2.4	2.4	2.4	25	15.0 26.8	90.0	5.7 6.0		102.0 679	.0 6.3	11.2 6.3	1.28	82 1.282	19.234	5.26	2115	0.74	20	Α	G		3457		13.86	Yes	19.10	7678 1.3	8 1.9E-0)2 ′	1 in 47
B54	Rotated Panel / Double Goaf	124.8	45.0	2.4	2.4	2.4	25	15.0 26.8	90.0	5.7 5.8		102.0 674				82 1.282		5.24	2105	0.74	20	Α	G		3443		13.80	Yes	19.10	7678 1.3	8 1.8E-0		1 in 50
B55	Rotated Panel / Maingate Load	125.0	45.0	2.4	2.4	2.4	25	15.0 26.8 24.2 15.4	90.0	5.7 5.8 5.0 5.4		102.0 674				82 1.282 78 0.778		5.25	2109	0.74	20	A	M		1490		8.95	Yes	19.10	7678 2.1			1000000
B56 B57	Double Goaf Loading Double Goaf Loading	123.0 122.0	45.0 45.0	2.4	2.4	2.4	25 25	24.2 15.4 25.5 22.0	90.0	5.0 5.4		372.7 607 561.0 829				78 0.778 26 0.926		5.01 4.51	1868 2530	0.88	20 20	A A	G G		2155 2787		10.79 9.48	Yes	26.12 31.00	9733 2. 4 17388 3. 2	2 1.5E-0 7 7.3E-1		1000000 1000000
B58	Tailgate Loading	121.0	45.0	2.4	2.4	2.4	25	24.5 16.6	90.0	5.3 5.8		106.7 667		6.9 6.1		08 0.808		4.96	2019	0.89	20	A	T		1930		9.71	Yes	27.14	11037 2.7			1000000
B59	Rotated Panel / Double Goaf	121.5	45.0	2.4	2.4	2.4	25	16.8 26.6	90.0	5.8 5.4		146.9 723		11.1 7.0		26 1.226		4.92	2197	0.78	20	Α	G		3261		12.21	Yes	20.69	9246 1.6	9 5.2E-0		in 2239
B60	Rotated Panel / Double Goaf	122.0	45.0	2.4	2.4	2.4	25	16.8 26.6	90.0	5.8 5.4		146.9 723		11.1 7.0		26 1.226		4.94	2206	0.78	20	Α	G		3279		12.27	Yes	20.69	9246 1.6	9 5.8E-0		in 1998
B61	Rotated Panel / Double Goaf	123.0	45.0	2.4	2.4	2.4	25	16.8 26.6	90.0	5.8 6.2		146.9 741				26 1.226		5.10	2279	0.78	20	A	G		3398		12.70	Yes	20.69	9246 1.6	3 1.1E-0		1 in 931
B62 B63	Rotated Panel / Double Goaf Rotated Panel / Double Goaf	123.5 124.0	45.0 45.0	2.4	2.4	2.4	25 25	16.8 26.6 16.8 26.6	90.0	5.8 6.0 5.8 6.3		146.9 736. 146.9 743.		11.1 7.0 11.1 7.0		26 1.226 26 1.226		5.09 5.16	2275 2305	0.78	20 20	A A	G G		3396 3446		12.69 12.87	Yes	20.69	9246 1.6 9246 1.6	3 1.3E-0		1 in 956 1 in 712
B63	Rotated Panel / Double Goaf	125.5	45.0	2.4	2.4	2.4	25	16.8 26.0	90.0	5.8 6.1		136.8 725		10.8 7.0		15 1.215		5.16	2305	0.78	20	A	G		3416		13.03	Yes	20.69	8997 1.8	1.4E-0		1 in 712 1 in 502
B65	Double Goaf Loading	120.0	45.0	2.4	2.4	2.4	25	19.8 15.5	90.0	7.5 6.1		306.9 589		6.5 6.4		78 0.878		5.76	1769	0.86	20	A	G		2165		12.82	Yes	20.99	6443 1.6	4 1.2E-0		in 1053
	'9		·							1 - 1 - '					3.07	1							-			L							

Table A.2 Run 2 Page 2 16471.21 Pillar Stability Analysis

Table A.2: Pillar Stability Analysis

Run 2: Remove Crushed Pillars from Run 1

Lake Macquarie Private Hospital Northern Expansion O'Brien Street, Gateshead NSW Pillar formula Project: Location: Client: Akalan Projects 18/10/16 Date: Analysis Assumptions: Sheet:

Project Number 16471.21 Calculations by JAW

Key to Colour Coding of Factors of Safety / Width: Height Ratios

1.50	Greater than 3.0	
2.40	Between 2.2 and 3.0	
2.10	Between 1.8 and 2.2	Indicating Pillar Located within Project Angle of Draw
1.70	Between 1.5 and 1.8	Indicating Pillar Located beneath site
1.20	Less than 1.5	

Analy	ysis Comment	Depth	Panel Width/Span	Seam	Working	Pillar Heigh	nt Unit	Pillar	Details		adway De	ta Extrac	t. Pillar	Total	w1/	w2/H	Width/	Wid	dth Modifier	Pillar	Pillar	Proportion	Abutment		Abutment	Shed	Abutment	Pillar	Pillar			Powe	r Law		Probability
ld:	:		(Longwall only)	Thickness	Section	Section	Weigth	Width	Length	Internal		Ratio	Area	Area	Height H	Height I	Height		wΘ	Stress	Load	Abutment	Angle	Abut (A)	Loading	Load	Load	Stress (MPa)	Stress		Strength	"Ultimate"	FoS	Probability	of Failure
		D			Н	Н	γ	w1	w2	Angle	b1 b2				Ratio I	Ratio	Ratio	Θ_0	Θ Effective	(Tributary)	(Tributary) transfer	۰	Yield (Y)	Туре		Received	("Yield")	("Abut")	Squat		Load		of Failure	NSW Power
		(m)	(m)	(m)	(m)	(m)	(kN/m ³)	(m)	(m)	(°)	(m) (m)	(%)	m ³	m ³	w1/H	w2/H			Width	(MPa)	MN	R		(?)	M,T,G	MN	MN	φ _g = 0.7	(MPa)		(MPa)	MN			Formulae
B66	6 Double Goaf Loading	119.5	45.0	2.4	2.4	2.4	25	24.7	16.2	90.0	5.5 5.0	37.5	400.1	640.2	10.3	6.8	6.75 0	.792 0	0.792 19.567	4.78	1913	0.90	20	Α	G		2113		10.06	Yes	27.21	10888	2.70	2.5E-10	1 in 1000000
B6	7 Tailgate Loading	119.0	45.0	2.4	2.4	2.4	25	24.7	16.2	90.0	5.5 5.2	38.1	400.1	646.3	10.3	6.8	6.75 0	.792 0	0.792 19.567	4.81	1923	0.90	20	Α	Т		1803		9.31	Yes	27.21	10888	2.92	1.1E-11	1 in 1000000
B6	8 Rotated Panel / Double Goaf	120.0	45.0	2.4	2.4	2.4	25	16.0	27.0	90.0	5.2 5.8	37.9	432.0	695.4	6.7	11.3	6.67	.256 1	1.256 20.093	4.83	2086	0.76	20	Α	G		3287		12.44	Yes	19.99	8636	1.61	1.4E-03	1 in 705
B69	9 Rotated Panel / Double Goaf	120.0	45.0	2.4	2.4	2.4	25	16.0	27.0	90.0	5.2 5.8	37.9	432.0	695.4	6.7	11.3	6.67	.256 1	1.256 20.093	4.83	2086	0.76	20	Α	G		3287		12.44	Yes	19.99	8636	1.61	1.4E-03	1 in 705
B70	0 Rotated Panel / Double Goaf	120.0	45.0	2.4	2.4	2.4	25	16.0	27.0	90.0	5.2 5.6	37.5	432.0	691.1	6.7	11.3	6.67 1	.256 1	1.256 20.093	4.80	2073	0.76	20	Α	G		3267		12.36	Yes	19.99	8636	1.62	1.3E-03	1 in 801
B7	Rotated Panel / Double Goaf	120.0	45.0	2.4	2.4	2.4	25	16.0	27.0	90.0	5.2 5.7	37.7	432.0	693.2	6.7	11.3	6.67 1	.256 1	1.256 20.093	4.81	2080	0.76	20	Α	G		3277		12.40	Yes	19.99	8636	1.61	1.3E-03	1 in 751
B7:	2 Rotated Panel / Double Goaf	120.0	45.0	2.4	2.4	2.4	25	16.0	27.0	90.0	5.2 5.7	37.7	432.0	693.2	6.7	11.3	6.67	.256 1	1.256 20.093	4.81	2080	0.76	20	Α	G		3277		12.40	Yes	19.99	8636	1.61	1.3E-03	1 in 751
B7:	3 Rotated Panel / Double Goaf	120.0	45.0	2.4	2.4	2.4	25	16.0	27.0	90.0	5.2 5.9	38.1	432.0	697.5	6.7	11.3	6.67 1	.256 1	1.256 20.093	4.84	2092	0.76	20	Α	G		3297		12.48	Yes	19.99	8636	1.60	1.5E-03	1 in 662
B74	4 Double Goaf Loading	118.2	45.0	2.4	2.4	2.4	25	25.3	15.5	90.0	5.5 5.3	38.8	392.2	640.6	10.5	6.5	6.46 0	.760 0	0.760 19.223	4.83	1893	0.91	20	Α	G		2043		10.04	Yes	27.67	10849	2.76	1.2E-10	1 in 1000000
B7:	5 Double Goaf Loading	118.0	45.0	2.4	2.4	2.4	25	25.1	15.5	90.0	5.5 5.8	40.3	389.1	651.8	10.5	6.5	6.46 0	.764 0	0.764 19.165	4.94	1923	0.91	20	Α	G		2087		10.31	Yes	27.39	10655	2.66	4.9E-10	1 in 1000000
B70	6 Maingate Loading	117.0	45.0	2.4	2.4	2.4	25	26.4	15.6	90.0	5.5 5.3	38.2	411.8	666.7	11.0	6.5	6.50 0	.743 0	0.743 19.611	4.74	1950	0.92	20	Α	M		1090		7.38	Yes	29.30	12067	3.97	3.1E-18	1 in 1000000
B7	7 Rotated panel / Maingate Loading	118.0	45.0	2.4	2.4	2.4	25	15.4	27.7	90.0	5.7 5.3	38.7	426.6	696.3	6.4	11.5	6.42 1	.285 1	1.285 19.795	4.82	2054	0.76	20	Α	М		1440		8.19	Yes	19.55	8340	2.39	2.4E-08	1 in 1000000
B78	8 Rotated panel / Maingate Loading	119.0	45.0	2.4	2.4	2.4	25	15.3	27.3	90.0	5.6 5.3	38.7	417.7	681.3	6.4	11.4	6.38 1	.282 1	1.282 19.610	4.85	2027	0.75	20	Α	М		1423		8.26	Yes	19.41	8109	2.35	4.1E-08	1 in 1000000
B79	9 Rotated panel / Maingate Loading	120.0	45.0	2.4	2.4	2.4	25	15.5	27.3	90.0	5.4 5.3	37.9	423.2	681.3	6.5	11.4	6.46 1	.276 1	1.276 19.773	4.83	2044	0.75	20	Α	М		1428		8.20	Yes	19.59	8288	2.39	2.4E-08	1 in 1000000
B80	0 Rotated panel / Maingate Loading	121.0	45.0	2.4	2.4	2.4	25	15.5	27.3	90.0	5.7 5.3	38.8	423.2	691.1	6.5	11.4	6.46 1	.276 1	1.276 19.773	4.94	2091	0.76	20	Α	М		1463		8.40	Yes	19.59	8288	2.33	5.3E-08	1 in 1000000
B8	Rotated panel / Maingate Loading	122.0	45.0	2.4	2.4	2.4	25	15.5	27.3	90.0	5.6 5.3	38.5	423.2	687.9	6.5	11.4	6.46	.276 1	1.276 19.773	4.96	2098	0.75	20	Α	M		1467		8.42	Yes	19.59	8288	2.32	5.9E-08	1 in 1000000
B8:	2 Rotated panel / Maingate Loading	123.0	45.0	2.4	2.4	2.4	25	15.5	27.3	90.0	5.6 5.3	38.5	423.2	687.9	6.5	11.4	6.46 1	.276 1	1.276 19.773	5.00	2115	0.75	20	Α	M		1479		8.49	Yes	19.59	8288	2.31	7.7E-08	1 in 1000000
B8:	3	113.0		2.4	2.4	2.4	25	13.6	9.9	90.0	5.4 6.2	56.0	134.6	305.9	5.7	4.1	4.13 0	.843 0	0.859 11.679	6.42	864	0.72	21	Α	M		89		7.08	Yes	14.47	1948	2.04	3.4E-06	1 in 450037
B84	4	113.5		2.4	2.4	2.4	25	14.0	9.6	90.0	5.6 6.2	56.6	134.4	309.7	5.8	4.0	4.00 0	.814 0	0.823 11.521	6.54	879	0.74	22	Α	М		92		7.23	Yes	14.45	1942	2.00	6.4E-06	1 in 215774
B8:	5	113.8		2.4	2.4	2.4	25	13.8	10.0	90.0	5.4 5.3	53.0	138.0	293.8	5.8	4.2	4.17 0	.840 0	0.853 11.766	6.06	836	0.73	23	Α	M		85		6.67	Yes	14.56	2009	2 18	4.6E-07	1 in 1000000

Table A.2 Run 2 Page 3 16471.21 Pillar Stability Analysis

Table A.3: Pillar Stability Analysis

Project Number

Run 3: Decrease Run 2 Pillars by 1 m

Lake Macquarie Private Hospital Northern Expansion O'Brien Street, Gateshead NSW Pillar formula Akalan Projects 18/10/16 Project: Client: Location: Date: Analysis Assumptions: Sheet:

16471.21

Calculations by JAW

Key to Colour Coding of Factors of Safety / Width: Height Ratios Greater than 3.0 2.40 Between 2.2 and 3.0 2.10 Between 1.8 and 2.2 1.70 Between 1.5 and 1.8 Indicating Pillar Located within Project Angle of Draw Indicating Pillar Located beneath site 1.20 Less than 1.5

Analysis	Comment	Depth	Panel Width/Span			g Pillar Heigl		Pillar Details		adway D	Deta Extract.		Total w1			Width	Modifier	Pillar	Pillar	Proportion			Abutment	Shed	Abutment	Pillar	Pillar			Power La			Probability
ld:	!	D	(Longwall only)	Thickness	s Section	n Section	Weigth	Width Length w1 w2	n Internal Angle	b1 b2	Ratio	Area	-			ΘοΘ	WΘ Effective	Stress ve (Tributary	Load () (Tributar	Abutment () transfer	Angle	Abut (A) Yield (Y)	Loading Type	Load	Load Received	Stress (MPa) ("Yield")	Stress ("Abut")	Squat	Strength	"Ultimate" F	of Failu	- 1	of Failure NSW Power
		(m)	(m)	(m)	(m)	(m)	(kN/m³	(m) (m)	(°)	(m) (r	m) (%)	m ³	2	H w2/H	Ratio	30 0	Width	n (MPa)	MN	R		(?)	M,T,G	MN	MN	φ _o = 0.7	(MPa)	Squat	(MPa)	MN	Orrano		Formulae
A1	-	127.7		2.4	2.4	2.4	25	17.6 30.0	90.0	5.9 6.	37.9	528.0	850.7 7.3	12.5	7.33 1.	.261 1.20	61 22.18	5 5.14	2716	0.79	20					16		Yes	22.02	11626 4	4.28 3.5E-2	·20 1 i	in 1000000
A2		126.7		2.4	2.4	2.4	25	16.4 30.5	90.0	6.2 6.		500.2	827.2 6.8	12.7	6.83 1.	.301 1.30	301 21.330	0 5.24	2619	0.77	20							Yes	20.83	10418 3	3.98 2.7E-1	·18 1 i	in 1000000
A3		126.7		2.4	2.4	2.4	25	18.1 30.4	90.0	6.3 6.			897.9 7.5				254 22.690		2843	0.81	20							Yes	22.64	12457 4	4.38 8.3E-2		in 1000000
A4 A5	Tailgate Loading	124.6	22.0	2.4	2.4	2.4	25	15.8 30.4	90.0	6.4 6. 6.4 6.			810.3 6.6				316 20.793		2523	0.77	20	A	ТТ		1868		9.14	Yes	20.24	9722 2	2.21 2.9E-0		in 1000000
A6		124.1 123.6		2.4	2.4	2.4	25 25	15.5 30.1 16.7 25.9	90.0	5.8 6.			795.0 6.5 724.5 7.0				20.463 216 20.307		2466 2238	0.77	20							Yes Yes	19.93	9299 3 8860 3	3.77 5.5E-1 3.96 3.6E-1		in 1000000
A7		123.1		2.4	2.4	2.4	25	16.2 25.5	90.0	6.2 6.			714.6 6.8				223 19.813		2199	0.78	20						\vdash	Yes	19.95	8242 3	3.75 7.5E-1		in 1000000
A8		122.7		2.4	2.4	2.4	25	15.7 25.5	90.0	6.4 6.			713.8 6.5				238 19.434		2189	0.77	20							Yes	19.51	7810 3	3.57 1.0E-1		in 1000000
A9		121.4		2.4	2.4	2.4	25	16.0 26.6	90.0	6.0 6.			723.8 6.7	11.1			249 19.98		2196	0.77	20							Yes	19.93	8484 3	3.86 1.4E-1		in 1000000
A10		123.9		2.4	2.4	2.4	25	16.3 16.4	90.0	6.3 5.			504.0 6.8				003 16.350		1561	0.78	20						├	Yes	18.14	4849 3	3.11 7.8E-1		in 1000000
A11 A12		124.2 123.2		2.4	2.4	2.4	25 25	16.0 16.3 15.7 16.1	90.0	6.3 6. 6.1 6.			497.3 6.7 486.1 6.5				009 16.149 013 15.897		1544 1498	0.77	20						\vdash	Yes Yes	17.88 17.61	4664 3 4451 2	3.02 2.7E-1 2.97 5.4E-1		in 1000000 in 1000000
A13		123.0		2.4	2.4	2.4	25	16.0 16.0	90.0	6.3 6.			492.8 6.7				000 16.000		1515	0.78	20						t	Yes	17.80	4556 3	3.01 3.2E-1		in 1000000
A14		121.9		2.4	2.4	2.4	25	16.0 16.1	90.0	6.5 6.		257.6	513.0 6.7				003 16.050		1563	0.78	20							Yes	17.83	4592 2	2.94 8.8E-1		in 1000000
A15		128.8		2.4	2.4	2.4	25	23.5 37.0	90.0	5.2 6.		869.5	1237.0 9.8	15.4	9.79 1.	.223 1.27	23 28.74	4 4.58	3984	0.87	20							Yes	31.47	27361 6	3.87 2.4E-3	·36 1 i	in 1000000
A16		128.9		2.4	2.4	2.4	25	17.6 30.5	90.0	6.4 6.			883.2 7.3				268 22.320		2846	0.80	20							Yes	22.09	11857 4	4.17 1.8E-1		in 1000000
A17 A18		128.8 127.3		2.4	2.4	2.4	25 25	19.0 30.7 18.1 30.7	90.0	6.3 6.4 6.2 6.4			951.3 7.9 901.5 7.5	12.8			235 23.473 258 22.773		3064 2869	0.82	20						 	Yes Yes	23.76	13860 4 12603 4	4.52 1.1E-2 4.39 7.0E-2		in 1000000
A19		125.9		2.4	2.4	2.4	25	16.0 30.5	90.0	6.2 6.			821.4 6.7				312 20.989		2585	0.80	20							Yes	20.44	9975 3	3.86 1.5E-1	~~~~	in 1000000
A20		125.1		2.4	2.4	2.4	25	15.3 30.5	90.0	6.3 6.			797.0 6.4				332 20.378		2493	0.76	20						$\overline{}$	Yes	19.80	9239 3	3.71 1.4E-1		in 1000000
A21		124.4		2.4	2.4	2.4	25	16.2 15.0	90.0	6.3 6.			472.5 6.8				62 15.57		1469	0.78	20							Yes	17.65	4288 2	2.92 1.2E-1		in 1000000
A22		123.9		2.4	2.4	2.4	25	16.2 15.4	90.0	6.2 6.			479.4 6.8				75 15.790		1485	0.78	20							Yes	17.77	4433 2	2.99 4.4E-1		in 1000000
A23		123.6		2.4	2.4	2.4	25	16.4 15.4	90.0	5.8 6.3 6.3 6.3			481.7 6.8 490.3 6.8				969 15.884 969 15.884		1489	0.77	20					-		Yes	17.92	4526 3	3.04 2.0E-1		in 1000000
A24 A25		123.0 121.9		2.4	2.4	2.4	25 25	16.4 15.4 16.4 15.4	90.0	6.3 6.			490.3 6.8 492.6 6.8				969 15.884 969 15.884		1508 1501	0.78	20							Yes Yes	17.92 17.92	4526 3 4526 3	3.00 3.5E-1 3.02 2.9E-1		in 1000000
A26	Tailgate Loading	129.9	22.0	2.4	2.4	2.4	25	19.5 22.8	90.0	6.4 7.			777.0 8.1				78 21.02		2523	0.83	20	Α	T		1610		9.30	Yes	22.87	10169 2	2.46 8.4E-0		in 1000000
A27	Tailgate Loading	130.2	22.0	2.4	2.4	2.4	25	21.5 39.1	90.0	6.6 7.			1301.0 9.0		8.96 1.	.290 1.29	90 27.74		4236	0.86	20	Α	Т		2492		8.00	Yes	28.46	23927 3	3.56 1.2E-1		in 1000000
A28		128.8		2.4	2.4	2.4	25	22.4 24.8	90.0	6.4 6.		555.5	895.7 9.3	10.3	9.33 1.	.051 1.05	51 23.539	9 5.19	2884	0.87	20							Yes	27.15	15082 5	5.23 4.1E-2	-26 1 i	in 1000000
A29		128.2		2.4	2.4	2.4	25	9.2 24.4	90.0	6.5 6.			482.0 3.8				09 10.205		1545	0.61	20							No	13.48		1.96 1.1E-0		1 in 112021
A30 A31		127.3 125.3	 	2.4	2.4	2.4	25 25	12.5 24.7 16.4 15.7	90.0	6.5 6. 6.4 6.			589.0 5.2 499.3 6.8				232 15.402 278 16.042		1874 1564	0.70	20						 	Yes	16.51	5098 2 4638 2	2.72 2.0E-1 2.96 5.9E-1		in 1000000
A32		125.5		2.4	2.4	2.4	25	16.4 15.7	90.0	6.4 6.			505.8 7.0				966 16.23°		1574	0.78	20						 	Yes Yes	18.01 18.32	4833 3	3.07 1.3E-1		in 1000000 in 1000000
A33		125.9		2.4	2.4	2.4	25	16.3 15.6	90.0	6.6 6.		254.3					78 15.942	_	1557	0.78	20							Yes	17.91	4553 2	2.92 1.1E-1		in 1000000
A34		122.8		2.4	2.4	2.4	25	16.3 15.1	90.0	6.5 6.		246.1	485.6 6.8	6.3	6.29 0.	.962 0.96	962 15.677	7 6.06	1491	0.79	20							Yes	17.75	4370 2	2.93 9.5E-1	-12 1 i	in 1000000
A35		121.9		2.4	2.4	2.4	25	16.3 15.9	90.0	6.3 6.		259.2					988 16.098		1521	0.78	20						└	Yes	17.99	4664 3	3.07 1.4E-1		in 1000000
A36 A37		126.5		2.4	2.4	2.4	25	19.0 15.1	90.0	6.4 6. 6.2 6.			548.6 7.9				386 16.827 347 15.905		1735	0.82	20		***************************************					Yes	20.05	5753 3	3.32 3.8E-1		in 1000000
A37		125.1 124.0		2.4	2.4	2.4	25 25	16.8 15.1 16.6 14.8	90.0	6.1 6.			496.8 7.0 485.8 6.9				947 15.900		1554 1505	0.78	20							Yes	18.14 17.88	4601 2 4394 2	2.96 6.2E-1 2.92 1.1E-1		in 1000000 in 1000000
A39		123.6		2.4	2.4	2.4	25	16.6 15.0	90.0	6.3 6.			490.1 6.9				949 15.759		1514	0.79	20							Yes	17.95	4469 2	2.95 7.2E-1		in 1000000
A40		121.8		2.4	2.4	2.4	25	16.6 15.4	90.0	6.3 6.	3.5 49.0	255.6	501.5 6.9	6.4	6.42 0.	.963 0.96	63 15.978	8 5.97	1527	0.79	20							Yes	18.07	4621 3	3.03 2.4E-1	·12 1 i	in 1000000
A41	Double Goaf Loading	130.0	45.0	2.4	2.4	2.4	25	27.0 31.6	90.0	6.5 6.		+	1283.1 11.3				78 29.119		4170	0.92	20	Α	G		4270		9.89	Yes	36.78	31381 3	3.72 1.2E-1		in 1000000
A42		127.3		2.4	2.4	2.4	25	20.0 22.9	90.0	6.3 6.			762.7 8.3				068 21.352 159 17.738		2427	0.84	20						ļ	Yes	23.49	10758 4	4.43 4.0E-2		in 1000000
A43 A44		126.8 125.1		2.4	2.4	2.4	25 25	15.3 21.1 16.8 15.4	90.0	6.5 6. 6.0 6.			606.0 6.4 501.6 7.0				957 16.070		1922 1569	0.76	20						l	Yes Yes	18.45 18.23	5955 3 4717 3	3.10 8.6E-1 3.01 3.2E-1		in 1000000
A45		124.3		2.4	2.4	2.4	25	16.8 15.4	90.0	6.1 6.			501.5 7.0				957 16.070		1558	0.78	20							Yes	18.23	4717 3	3.03 2.4E-1		in 1000000
A46		124.2		2.4	2.4	2.4	25	16.8 15.4	90.0	6.4 6.	6.4 48.8	258.7	505.8 7.0	6.4	6.42 0.	.957 0.9!	57 16.070		1570	0.79	20							Yes	18.23	4717 3	3.4E-1	·12 1 i	in 1000000
A47		122.0		2.4	2.4	2.4	25	16.8 15.7	90.0	6.4 6.			510.4 7.0				66 16.23		1556	0.79	20							Yes	18.32	4833 3	3.11 7.8E-1		in 1000000
A48		128.2		2.4	2.4	2.4	25	17.9 28.1	90.0	7.0 7.			874.0 7.5				222 21.869		2801	0.81	20						ļ	Yes	22.07	11102 3	3.4E-1		in 1000000
A49 A50		126.8 128.2		2.4	2.4	2.4	25 25	32.6 43.0 16.8 42.0		6.5 7. 6.1 7.			1955.0 13.6 1126.7 7.0				38 37.085 29 24.000		6199 3611	0.97	20						\vdash	Yes Yes	52.76 22.37	73963 11 15784 4	1.93 5.4E-6 4.37 9.6E-2		in 1000000 in 1000000
A50 A51		125.1		2.4	2.4	2.4	25	12.8 15.6		7.5 6.			442.5 5.3				76 13.77		1384	0.73	20							Yes	15.62		2.25 1.6E-0		in 1000000
A52		126.7		2.4	2.4	2.4	25	32.0 12.8	90.0	7.5 7.			782.1 13.3				71 18.286		2476	0.97	20							Yes	35.88	14697 5	5.94 1.6E-3		in 1000000
A53	Tailgate Loading	130.2	22.0	2.4	2.4	2.4	25	13.7 38.0	90.0	7.5 7.			966.7 5.7				16 19.399		3147	0.74	20	Α	T		2454		10.76	Yes	18.77	9769 1	1.74 2.5E-0		1 in 4501
A54		129.4		2.4	2.4	2.4	25	13.7 42.3	90.0	7.5 7.			1055.8 5.7				151 19.883		3416	0.74	20						 	Yes	19.00	11012 3	3.22 1.4E-1		in 1000000
A55 A56		127.3 124.8	 	2.4	2.4	2.4	25 25	14.8 66.0 12.0 13.5	90.0	7.4 7. 7.2 9.			1620.6 6.2 447.4 5.0				34 24.178 39 12.466		5158 1396	0.77	20						\vdash	Yes Yes	21.38 14.93	20881 4 2418 1	9.9E-1 1.73 3.0E-0		1 in 3807
A50 A57		124.8		2.4	2.4	2.4	25	11.7 39.3		7.4 7.			886.2 4.9				310 15.332		2834	0.71	20							No No	16.59		2.69 3.0E-0		in 1000000
A58		125.1		2.4	2.4	2.4	25	14.0 32.1	90.0	7.7 7.			859.3 5.8				67 19.14		2688	0.76	20							Yes	18.72	8411 3	3.13 5.5E-1		in 1000000
A59	Double Goaf Loading	130.3	22.0	2.4	2.4	2.4	25	14.1 25.9	90.0	7.2 6.			692.3 5.9				281 18.064		2255	0.74	20	Α	G		2059		11.81	Yes	18.20	6646 1	1.54 3.0E-0		1 in 305
A60	Tailgate Loading	129.8	22.0	2.4	2.4	2.4	25	13.6 37.6	90.0	7.2 7.			927.7 5.7				107 19.140		3010	0.73	20	Α	Т		2391		10.56	Yes	18.61	9518 1	1.76 1.9E-0		1 in 5793
A61 A62		132.3 127.3		2.4	2.4	2.4	25 25	13.6 42.6 13.6 25.5	90.0	7.3 7.			1042.9 5.7 684.6 5.7				148 19.686 266 17.223		3449 2179	0.73	20						 	Yes Yes	18.88 17.64	10940 3 6117 2	3.17 3.0E-1 2.81 5.7E-1		in 1000000 in 1000000
A63		130.0		2.4	2.4	2.4	25	11.2 51.9	90.0	7.3 6.			1087.8 4.7				319 14.768		3535	0.74	20							No No	16.27	9459 2	2.68 3.8E-1		in 1000000
A64		127.3		2.4	2.4	2.4	25	11.2 49.8	90.0	7.2 7.			1050.6 4.7				313 14.707		3344	0.68	20							No	16.24	9057 2	2.71 2.4E-1		in 1000000
A65	Double Goaf Loading	125.1	4 5.0	2.4	2.4	2.4	25	19.7 23.5		89.9 6.			3266.1 8.2		8.21 1.	.088 1.00	88 21.43	3 22.06	10215	1.75	20	A	G		3158		28.89	Yes	23.27	10773	4.0E+(-00	#NUM!
A66	Maingate Loading	126.1	4 5.0	2.4	2.4	2.4	25	14.8 23.5		73.2 6.			2640.0 6.2				27 18.162		8323	1.15	20	A	M		5812		40.64	Yes	18.47	6426	4.0E+(#NUM!
A67	Maingate Loading	127.9	45.0	2.4	2.4	2.4	2 5	15.2 23.3	90.0	38.2 6. 6.3 6.			1602.0 6.3				18.39		5122	1.00	20	A	M		3467		24.25	Yes	18.75	10390	4.0E+(#NUM!
A68 A69	Maingate Loading	122.1 122.1	22.0	2.4	2.4	2.4	25 25	15.0 34.4 16.4 18.4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6.6 7.			862.7 6.3 595.7 6.8				93 20.89° 957 17.343		2633 1818	0.76	20	A	M		1196		7.42	Yes Yes	19.92 18.74	10280 2 5656 3	2.68 3.3E-1 3.11 7.3E-1	~~~~~	in 1000000 in 1000000
A70		122.1		2.4	2.4	2.4	25	15.9 18.2		6.4 7.			573.1 6.6				067 16.972		1749	0.78	20							Yes	18.29	5294 3	3.03 2.4E-1		in 1000000
A71		121.2		2.4	2.4	2.4	25	15.9 18.2	90.0	5.9 7.	7.5 48.3		560.3 6.6				067 16.972	_	1698	0.77	20							Yes	18.29	5294 3	3.12 6.5E-1		in 1000000
A72																																	
A73	Maingate Loading	120.6 124.2	22.0	2.4	2.4	2.4	25 25	15.9 18.2 15.5 30.9		6.0 7.			562.8 6.6 797.9 6.5				067 16.972 032 20.644		1697 2477	0.77	20	A	M		1111		7.49	Yes Yes	18.29 20.02	5294 3 9589 2	3.12 6.3E-1 2.67 4.0E-1		in 1000000 in 1000000

Table A.3 Run 3 Page 1 16471.21 Pillar Stability Analysis

Table A.3: Pillar Stability Analysis

Run 3: Decrease Run 2 Pillars by 1 m

Lake Macquarie Private Hospital Northern Expansion O'Brien Street, Gateshead Project: Client: Akalan Projects 18/10/16 Location: Date:

NSW Pillar formula Analysis Assumptions: Sheet: Project Number 16471.21

Calculations by JAW

Key to Colour Coding of Factors of Safety / Width: Height Ratios

Greater than 3.0 Between 2.2 and 3.0 2.10 Between 1.8 and 2.2 Between 1.5 and 1.8 Less than 1.5

Indicating Pillar Located within Project Angle of Draw Indicating Pillar Located beneath site

Analysis	Comment	Depth	Panel Width/Span	Seam	Working	Pillar Height	Unit	Pillar D)etails		adway Deta	Extract.	Pillar	Total	w1/ v	w2/H \	Nidth/	Width	Modifier	Pillar	Pillar	Proportion	Abutment		Abutment	Shed	Abutment	Pillar	Pillar			Power	Law		Probability
ld:	Continent	Бериі	(Longwall only)	Thickness	1	Section	Weigth		Length	Internal	adway Dete	Ratio	Area		Height H			VVIGE	WΘ	Stress	Load	Abutment	1	Abut (A)	Loading	Load	Load	Stress (MPa)	Stress		Strength	"Ultimate"		bability	of Failure
		D			Н	Н	γ 3	w1	w2	Angle	b1 b2		3	3			Ratio	$\Theta_0 \mid \epsilon$	9 Effective		1` 1) transfer	۰	Yield (Y)	Type		Received	("Yield")	("Abut")	Squat		Load	of I	ailure	NSW Power
A74		(m)	(m)	(m)	(m)	(m)	(kN/m³)	(m)	(m)	(°)	(m) (m)	(%)	m ²	m³		ν2/H	0.40	004 4.0	Width	(MPa)	MN	R	200	(?)	M,T,G	MN	MN	φ _g = 0.7	(MPa)	V	(MPa)	MN	0.00)E 44	Formulae
A74 A75		122.3 121.8		2.4	2.4	2.4	25 25	15.4 15.6	16.4	90.0	6.5 6.2 6.2 6.4	49.0 49.0		494.9 486.1		6.8	6.50 1	.031 1.0	031 15.884 010 15.749	5.99 5.97	1513 1480	0.77	20	***************************************			***************************************			Yes Yes	17.48 17.48	4414 4336	····	2E-11 1 9E-12 1	1 in 1000000 1 in 1000000
A76		121.8		2.4	2.4	2.4	25	15.6	16.1		5.8 6.7	48.5	251.2	487.9		6.7	6.50 1		15.846	5.92	1486	0.76	20							Yes	17.54	4404		9E-12 1	1 in 1000000
A77		121.2		2.4	2.4	2.4	25	15.6	16.0		6.0 6.0	47.5		475.2		6.7			15.797	5.77	1440	0.76	20							Yes	17.51	4370		IE-12 1	1 in 1000000
A78 A79	Maingate Loading	121.8	22.0	2.4	2.4	2.4	25	15.5	28.9		6.3 5.4 7.6 6.3	40.1		747.7		12.0			302 20.178	5.08	2277	0.77	20	Α	М		1025		7.37	Yes	19.79	8865		BE-10 1	1 in 1000000
A79 A80	Tailgate Loading / Double Goaf	121.9 125.6	45.0	2.4	2.4	2.4	25 25	15.2 17.5	16.6 30.5	90.0	24.2 6.0	51.7 64.9		522.1 1522.1		6.9 12.7			044 15.869 271 22.240	6.31 8.95	1591 4779	0.79	20	A	G		3888		16.24	Yes Yes	17.39 21.98	4388 11730		2E-10 1 5E-02	1 in 1000000 1 in 36
A81		121.8		2.4	2.4	2.4	25	14.4	16.5		6.2 6.1	49.0	237.6			6.9			068 15.379	5.97	1418	0.74	20							Yes	16.85	4003		5E-11 1	1 in 1000000
B1		121.2		2.4	2.4	2.4	25	16.2	14.9		6.4 7.7	52.7		510.8		6.2			958 15.523	6.41	1548	0.78	20							Yes	17.62	4252		BE-10 1	1 in 1000000
B2 B3		120.6 120.1		2.4	2.4	2.4	25	15.8	14.9		6.4 7.7 6.4 7.7	53.1				6.2			15.337	6.43	1513	0.78	20							Yes	17.33	4080		3E-10 1	1 in 1000000
B3		120.1		2.4	2.4	2.4	25 25	15.0 16.3	14.4		6.4 7.7 6.4 6.0	54.3 49.0	239.6			6.0			980 14.694 948 15.459	6.57 5.89	1420 1412	0.76	20							Yes	16.65 17.63	3596 4224)E-09 1)E-12 1	1 in 1000000 1 in 1000000
B5		119.6		2.4	2.4	2.4	25	15.9	14.8		6.4 6.0	49.3	***********			6.2			964 15.330	5.89	1387	0.78	20	***************************************	***************************************		***************************************	***************************************		Yes	17.37	4087		SE-12 1	1 in 1000000
B6		119.2		2.4	2.4	2.4	25	16.3	15.1		6.4 6.0	48.6				6.3			962 15.677	5.80	1427	0.79	20							Yes	17.75	4370	·····	E-12 1	1 in 1000000
B7 B8		118.6		2.4	2.4	2.4	25	17.3	23.6		6.4 6.2 6.4 6.2	42.2		706.3		9.8	7.21 1		154 19.965	5.13	2094	0.81	20							Yes	20.67	8440		BE-18 1	1 in 1000000
B9		119.0 120.0		2.4	2.4	2.4	25 25	17.1 17.0	23.9		6.4 6.2 6.4 6.2	42.2 42.3	406.3			10.0	7.13		166 19.936 169 19.868	5.15 5.20	2104	0.80	20							Yes Yes	20.53	8391 8303		E-18 1 E-18 1	1 in 1000000 1 in 1000000
B10		121.3		2.4	2.4	2.4	25	17.8	23.7		6.4 6.2	41.7				9.9			142 20.331	5.20	2194	0.81	20							Yes	21.20	8942		BE-19 1	1 in 1000000
B11	Maingate Loading	121.8	22.0	2.4	2.4	2.4	25	14.2	39.0	90.0	7.1 5.8	42.0	553.8	954.2	5.9	16.3	5.92 1	.466 1.4	151 20.599	5.25	2906	0.76	20	Α	М		1362		7.71	Yes	19.49	10793		IE-09 1	1 in 1000000
B12		121.0		2.4	2.4	2.4	25	17.6	18.0		6.4 6.2 6.4 6.2	45.5				7.5	7.33 1)11 17.798)57 16.696	5.55	1757	0.81	20							Yes	19.68	6234		BE-15 1	1 in 1000000
B13 B14		119.7 118.4		2.4	2.4	2.4	25 25	15.8 16.2	17.7 17.7		6.4 6.2	47.3 46.9				7.4 7.4	6.75		044 16.917	5.68 5.58	1588 1599	0.78	20							Yes Yes	18.10 18.41	5061 5278		E-13 1 E-14 1	1 in 1000000 1 in 1000000
B15		117.7		2.4	2.4	2.4	25	16.3	18.5		6.4 6.2	46.2		560.7		7.7			063 17.330	5.47	1650	0.79	20							Yes	18.68	5634		IE-15 1	1 in 1000000
B16		119.0		2.4	2.4	2.4	25	62.4	41.3		6.4 6.2	21.1				17.2	_		797 49.703	3.77	9722	1.01	20							Yes	167.32	431202	_	E-270 1	1 in 1000000
B17	- 2	119.7	00.0	2.4	2.4	2.4	25	15.1	30.1		6.5 6.7	42.8		794.9		12.5			332 20.111	5.23	2379	0.77	20		-		4000		0.00	Yes	19.58	8900		3E-17 1	1 in 1000000
B18 B19	Tailgate Loading Maingate Loading	119.9 120.0	22.0 45.0	2.4	2.4	2.4	25 25	15.7 16.5	30.1		6.6 6.7 6.6 6.7	42.4 41.5	472.6 500.0			12.5 12.6			314 20.636 295 21.365	5.21 5.13	2460 2564	0.78	20	A	M		1803 1767		9.02 8.66	Yes Yes	20.11	9505 10451		3E-07 1 7E-08 1	1 in 1000000 1 in 1000000
B20	Maingate Loading	119.5	45.0	2.4	2.4	2.4	25	16.5	30.4		6.6 5.9	40.2	501.6			12.7			296 21.390	4.99	2505	0.80	20	Α	М		1726		8.44	Yes	20.92	10491		IE-09 1	1 in 1000000
B21		119.3		2.4	2.4	2.4	25	15.8	30.1		6.8 5.9	41.5		813.6		12.5			312 20.722	5.10	2427	0.79	20							Yes	20.21	9609		SE-18 1	1 in 1000000
B22 B23		119.2		2.4	2.4	2.4	25	15.0	29.9 14.0		6.5 1.9 6.7 6.6	34.4 56.1		683.7		12.5			332 19.978	4.54	2037	0.77	20							Yes	19.47	8734		2E-20 1	1 in 1000000
B23		119.1 118.2		2.4	2.4	2.4	25 25	12.2 11.9	9.3		6.7 6.4	62.1				5.8 3.9			047 12.776 018 10.926	6.79 7.80	1159 863	0.71	20							Yes No	15.00	2562 1544		IE-07 1 BE-04	1 in 1000000 1 in 8619
B25		117.5		2.4	2.4	2.4	25	12.8	9.1		7.1 6.4	62.2				3.8			366 11.084	7.78	906	0.74	20		***************************************		***************************************			Yes	13.98	1629		2E-04	1 in 9658
B26		116.8		2.4	2.4	2.4	25	12.6	8.9	90.0	7.6 6.4	63.7				3.7			368 10.936	8.05	902	0.74	20							Yes	13.87	1556		IE-04	1 in 3374
B27 B28		116.0		2.4	2.4	2.4	25	13.0	8.6		7.1 6.4	62.9				3.6			332 10.821	7.82	874	0.74	20				•			Yes	13.83	1546		BE-04 BE-05	1 in 6362
B29		115.2 114.5		2.4	2.4	2.4	25 25	12.8 12.6	9.0		6.6 6.4 6.6 6.3	61.4 56.5	156.2			3.8 5.2			362 11.028 994 12.524	7.47 6.58	860 1028	0.73	20							Yes Yes	13.95 14.87	1607 2323		E-05	1 in 27211 1 in 1000000
B30		115.3		2.4	2.4	2.4	25	12.9	12.6		7.1 6.3	57.0				5.3			991 12.780	6.70	1090	0.74	20							Yes	15.05	2446		9E-07 1	1 in 1000000
B31		116.0		2.4	2.4	2.4	25	11.8	13.0	90.0	7.6 6.3	59.0				5.4			31 12.162	7.08	1086	0.73	20							No	14.74	2261		E-06	1 in 853092
B32 B33		116.7 117.4		2.4	2.4	2.4	25 25	13.0 11.9	13.1		7.1 6.3 6.7 6.3	56.3 56.9		389.9 359.0		5.5 5.4	5.42 1		003 13.040	6.68	1138 1054	0.74	20							Yes No	15.21 14.79	2591 2288		2E-07 1 IE-07 1	1 in 1000000 1 in 1000000
B34		118.3		2.4	2.4	2.4	25	14.6	29.9		6.5 6.0	42.4				12.5	6.08 1		344 19.620	5.13	2240	0.76	20							Yes	19.14	8357		E-17 1	1 in 1000000
B35		118.0		2.4	2.4	2.4	25	15.9	29.2	90.0	6.8 6.0	41.9	464.3	799.0	6.6	12.2	6.63 1	.295 1.2	295 20.589	5.08	2357	0.79	20							Yes	20.19	9373	3.98 2.8	BE-18 1	1 in 1000000
B36	Maingate Loading	118.1	45.0	2.4	2.4	2.4	25	16.3	28.9		6.6 6.0	41.1	471.1			12.0			279 20.844	5.01	2360	0.80	20	Α	М		1632		8.47	Yes	20.53	9671		IE-08 1	1 in 1000000
B37 B38	Maingate Loading	117.3 117.2	45.0	2.4	2.4	2.4	25 25	16.3 16.0	29.6		6.7 5.5 6.8 5.5	40.2	482.5 473.6			12.3 12.3			290 21.023 298 20.772	4.91 4.95	2367 2345	0.80	20	Α	М		1638		8.30	Yes Yes	20.62	9948 9629		E-09 1 E-19 1	1 in 1000000 1 in 1000000
B39		115.9		2.4	2.4	2.4	25	11.8	10.2		6.7 5.9	59.6				4.3	_		953 11.244	7.17	863	0.71	20							No	14.16	1704	_	IE-06	1 in 145652
B40		113.8		2.4	2.4	2.4	25	12.2	10.6	90.0	7.1 5.9	59.4	129.3	318.5	5.1	4.4	4.42	.930 0.9	951 11.599	7.01	906	0.73	20							Yes	14.28	1846	2.04 3.7	7E-06	1 in 406374
B41	Double Goaf Loading	121.0	45.0	2.4	2.4	2.4	25	16.0	36.8		6.4 6.0			958.7		15.3			394 22.303		2900	0.78	20	A	G		4338		12.29	Yes	21.08	12414		3E-04	1 in 2990
B42 B43	Double Goaf Loading Double Goaf Loading	122.0 123.0	45.0 45.0	2.4	2.4	2.4	25 25	17.1 16.9	29.0 34.2		6.3 5.8 6.8 5.6					12.1 14.3	_		258 21.514 339 22.622		2484 2901	0.80	20	A	G G		3566 4123		12.20 12.15	Yes	21.34	10585 12582		BE-04 BE-04	1 in 4850 1 in 8813
B44	Maingate Loading	124.0	22.0	2.4	2.4	2.4	25	17.3	30.3		6.8 5.6			865.2		12.6			273 22.025		2682	0.81	20	A	М		1173		7.35	Yes	21.73	11392		BE-12 1	1 in 1000000
B45	Tailgate Loading	125.0	45.0	2.4	2.4	2.4	25	16.1	15.6		6.0 12.5					6.5			984 15.846	7.73	1941	0.77	20	A	Ŧ		2528		17.79	Yes	17.76	4460		E+00	#NUM!
B46 B47	Tailgate Loading Tailgate Loading	128.0 127.7	22.0 45.0	2.4	2.4	2.4	25 25	20.6 19.6	14.8		11.0 6.4 9.9 6.5	54.5 53.8				6.2 6.2			336 17.225 360 16.865	7.03 6.92	2144 2006	0.91	20	A A	T T	ļ	1119 1971		10.70 13.71	Yes Yes	21.54	6567 5951		BE-06 DE-03	1 in 269329 1 in 178
B48	Maingate Loading	127.7 126.0	45.0 45.0	2.4 2.4	2.4 2.4	2.4 2.4	25 25	8.2	14.8		9.9 6.5 12.0 7.0			•		4.7			21 8.370	12.57	1164	0.88	20	A	M		962		22.95	No No	20.52 12.18	1129		E+00	#NUM!
B49	Rotated Panel / Double Goaf	125.0	22.0	2.4	2.4	2.4	25	12.0	7.2	90.0	6.0 7.1	66.4			5.0	3.0	3.00 0		325 9.906	9.31	804	0.68	20	Α	М		383		13.75	Yes	13.27	1147		E+00	#NUM!
B50	Maingate Loading / Double Goaf	123.0	45.0	2.4	2.4	2.4	25	23.8	14.2		6.0 6.9					5.9			747 17.787	5.72	1933	0.89	20	A	G		2186		12.19	Yes	24.95	8432		2E-06	1 in 470545
B51 B52	Rotated Panel / Double Goaf Rotated Panel / Double Goaf	123.5 124.0	45.0 45.0	2.4	2.4	2.4	25 25	14.0 14.0	25.8 25.8		6.7 6.5 6.7 6.5					10.8			278 17.891 278 17.891	5.72 5.74	2064 2073	0.74	20	A	G G		3365 3383		15.03 15.10	Yes	18.08	6531 6531		BE-01 FE-01	1 in 9 1 in 8
B53	Rotated Panel / Double Goaf	124.6	45.0	2.4	2.4	2.4	25	14.0	25.8		6.7 7.0			679.0		10.8			278 17.891	5.86	2115	0.74	20	A	G		3457		15.43	Yes	18.08	6531		BE-01	1 in 7
B54	Rotated Panel / Double Goaf	124.8	45.0	2.4	2.4	2.4	25	14.0	25.8		6.7 6.8	46.5	361.2	674.8	5.8	10.8			278 17.891	5.83	2105	0.74	20	Α	G		3443		15.36	Yes	18.08	6531		'E-01	1 in 7
B55	Rotated Panel / Maingate Load	125.0	45.0	2.4	2.4	2.4	25	14.0	25.8		6.7 6.8	46.5				10.8			278 17.891	5.84	2109	0.74	20	A	M		1527		10.07	Yes	18.08	6531		2E-04	1 in 9467
B56 B57	Double Goaf Loading Double Goaf Loading	123.0 122.0	45.0 45.0	2.4	2.4	2.4	25 25	23.2	14.4 21.0		6.0 6.4 6.0 6.2	45.0 38.0				6.0 8.8			766 17.770 923 22.615	5.59 4.92	1868 2530	0.88	20	A	G G		2155 2787		12.04 10.34	Yes Yes	24.32 29.05	8124 14945		BE-06 IE-11 1	1 in 299926 1 in 1000000
B58	Tailgate Loading	121.0	45.0	2.4	2.4	2.4	25	23.5	15.6		6.3 6.8	45.1				6.5			798 18.752		2019	0.89	20	A	T		1930		10.34	Yes	25.31	9278		IE-08 1	1 in 1000000
B59	Rotated Panel / Double Goaf	121.5	45.0	2.4	2.4	2.4	25	15.8	25.6		6.8 6.4	44.1			6.6	10.7	6.58 1	.237 1.2	237 19.540	5.43	2197	0.78	20	Α	G		3261		13.49	Yes	19.61	7931	1.45 8.1	IE-03	1 in 108
B60	Rotated Panel / Double Goaf	122.0	45.0	2.4	2.4	2.4	25	15.8	25.6		6.8 6.4					10.7			237 19.540		2206	0.78	20	A	G		3279		13.56	Yes	19.61	7931		BE-03	1 in 99
B61 B62	Rotated Panel / Double Goaf Rotated Panel / Double Goaf	123.0 123.5	45.0 45.0	2.4	2.4	2.4	25 25	15.8 15.8	25.6 25.6		6.8 7.2 6.8 7.0	45.4 45.1				10.7 10.7			237 19.540 237 19.540	5.64 5.62	2279 2275	0.78	20	A	G G		3398 3396		14.04 14.02	Yes Yes	19.61 19.61	7931 7931		5E-02 5E-02	1 in 57 1 in 59
B63	Rotated Panel / Double Goaf	124.0	45.0	2.4	2.4	2.4	25	15.8	25.6		6.8 7.3					10.7			237 19.540	5.70	2305	0.78	20	A	G		3446		14.22	Yes	19.61	7931		9E-02	1 in 47
B64	Rotated Panel / Double Goaf	125.5	45.0	2.4	2.4	2.4	25	15.8	25.0		6.8 7.1	45.6				10.4			225 19.363	5.76	2276	0.78	20	Α	G		3416		14.41	Yes	19.52	7710	1.35 2.5	E-02	1 in 36
B65	Double Goaf Loading	120.0	45.0	2.4	2.4	2.4	25	18.8	14.5	90.0	8.5 7.1	53.8	272.6	589.7	7.8	6.0	6.04	.871 0.8	371 16.372	6.49	1769	0.86	20	Α	G		2165		14.43	Yes	19.63	5352	1.36 2.3	3E-02	1 in 39

Table A.3 Run 3 Page 2 16471.21 Pillar Stability Analysis

Table A.3: Pillar Stability Analysis

Run 3: Decrease Run 2 Pillars by 1 m

Lake Macquarie Private Hospital Northern Expansion O'Brien Street, Gateshead NSW Pillar formula Client: Date: Sheet: Akalan Projects 18/10/16 Project: Location: Analysis Assumptions:

16471.21 Calculations by JAW

Project Number

Key to Colour Coding of Factors of Safety / Width: Height Ratios

50	Greater than 3.0
40	Between 2.2 and 3.0
10	Between 1.8 and 2.2
70	Between 1.5 and 1.8
20	Less than 1.5

 Indicating Pillar Located within Project Angle of Draw
 Indicating Pillar Located beneath site

Analysis	Comment	Depth	Panel Width/Span	Seam	Working	Pillar Heigh	ht Unit	Pillar Details		adway D	eta Extract.	Pillar	Total w1	/ w2/l	Width/	Wi	/idth Modi	fier	Pillar	Pillar	Proportion	Abutment		Abutment	Shed	Abutment	Pillar	Pillar			Power I	Law		Probability
ld:			(Longwall only)	Thickness	Section	Section	Weigth	Width Leng	h Internal		Ratio	Area	Area Heig	ht Heig	nt Height			wΘ	Stress	Load	Abutment	Angle	Abut (A)	Loading	Load	Load	Stress (MPa)	Stress		Strength	"Ultimate"	FoS F	Probability	of Failure
		D			Н	Н	γ	w1 w2	Angle	b1 b	2		Rat	io Rati	Ratio	Θ_0	Θ Ε	ffective ((Tributary)	(Tributary)	transfer	۰	Yield (Y)	Type		Received	("Yield")	("Abut")	Squat		Load	7	of Failure	NSW Power
		(m)	(m)	(m)	(m)	(m)	(kN/m ³	(m) (m)	(°)	(m) (n	1) (%)	m ³	m ³ w1/	H w2/l				Width	(MPa)	MN	R		(?)	M,T,G	MN	MN	φ _g = 0.7	(MPa)		(MPa)	MN			Formulae
B66	Double Goaf Loading	119.5	45.0	2.4	2.4	2.4	25	23.7 15.2	90.0	6.5 6	0 43.7	360.2	640.2 9.9	9 6.3	6.33	0.781	0.781	18.521	5.31	1913	0.90	20	Α	G		2113		11.17	Yes	25.36	9136	2.27	1.3E-07	1 in 1000000
B67	Tailgate Loading	119.0	45.0	2.4	2.4	2.4	25	23.7 15.2	90.0	6.5 6	2 44.3	360.2	646.3 9.9	6.3	6.33	0.781	0.781	18.521	5.34	1923	0.90	20	Α	Т		1803		10.34	Yes	25.36	9136	2.45	9.4E-09	1 in 1000000
B68	Rotated Panel / Double Goaf	120.0	45.0	2.4	2.4	2.4	25	15.0 26.0	90.0	6.2 6	8 43.9	390.0	695.4 6.3	3 10.8	6.25	1.268	1.268	19.024	5.35	2086	0.76	20	Α	G		3287		13.78	Yes	18.99	7408	1.38	1.9E-02	1 in 47
B69	Rotated Panel / Double Goaf	120.0	45.0	2.4	2.4	2.4	25	15.0 26.0	90.0	6.2 6	8 43.9	390.0	695.4 6.3	3 10.8	6.25	1.268	1.268	19.024	5.35	2086	0.76	20	Α	G		3287		13.78	Yes	18.99	7408	1.38	1.9E-02	1 in 47
B70	Rotated Panel / Double Goaf	120.0	45.0	2.4	2.4	2.4	25	15.0 26.0	90.0	6.2 6	6 43.6	390.0	691.1 6.3	3 10.8	6.25	1.268	1.268	19.024	5.32	2073	0.76	20	Α	G		3267		13.69	Yes	18.99	7408	1.39	1.7E-02	1 in 52
B71	Rotated Panel / Double Goaf	120.0	45.0	2.4	2.4	2.4	25	15.0 26.0	90.0	6.2 6	7 43.7	390.0	693.2 6.3	3 10.8	6.25	1.268	1.268	19.024	5.33	2080	0.76	20	Α	G		3277		13.74	Yes	18.99	7408	1.38	1.8E-02	1 in 49
B72	Rotated Panel / Double Goaf	120.0	45.0	2.4	2.4	2.4	25	15.0 26.0	90.0	6.2 6	7 43.7	390.0	693.2 6.3	3 10.8	6.25	1.268	1.268	19.024	5.33	2080	0.76	20	Α	G		3277		13.74	Yes	18.99	7408	1.38	1.8E-02	1 in 49
B73	Rotated Panel / Double Goaf	120.0	45.0	2.4	2.4	2.4	25	15.0 26.0	90.0	6.2 6	9 44.1	390.0	697.5 6.3	3 10.8	6.25	1.268	1.268	19.024	5.37	2092	0.76	20	Α	G		3297		13.82	Yes	18.99	7408	1.37	2.0E-02	1 in 45
B74	Double Goaf Loading	118.2	45.0	2.4	2.4	2.4	25	24.3 14.5	90.0	6.5 6	3 45.0	352.4	640.6 10.	1 6.0	6.04	0.747	0.747	18.162	5.37	1893	0.91	20	Α	G		2043		11.17	Yes	25.75	9075	2.31	7.8E-08	1 in 1000000
B75	Double Goaf Loading	118.0	45.0	2.4	2.4	2.4	25	24.1 14.5	90.0	6.5 6	8 46.4	349.5	651.8 10.	0 6.0	6.04	0.751	0.751	18.106	5.50	1923	0.91	20	Α	G		2087		11.47	Yes	25.50	8910	2.22	2.6E-07	1 in 1000000
B76	Maingate Loading	117.0	45.0	2.4	2.4	2.4	25	25.4 14.6	90.0	6.5 6	3 44.4	370.8	666.7 10.	6 6.1	6.08	0.730	0.730	18.542	5.26	1950	0.92	20	Α	М		1118		8.27	Yes	27.28	10116	3.30	4.9E-14	1 in 1000000
B77	Rotated panel / Maingate Loading	118.0	45.0	2.4	2.4	2.4	25	14.4 26.7	90.0	6.7 6	3 44.8	384.5	696.3 6.0	11.	6.00	1.299	1.299	18.709	5.34	2054	0.76	20	Α	М		1477		9.18	Yes	18.62	7158	2.03	4.3E-06	1 in 341810
B78	Rotated panel / Maingate Loading	119.0	45.0	2.4	2.4	2.4	25	14.3 26.3	90.0	6.6 6	3 44.8	376.1	681.3 6.0	11.0	5.96	1.296	1.291	18.460	5.39	2027	0.75	20	Α	М		1459		9.27	Yes	18.46	6943	1.99	7.2E-06	1 in 189645
B79	Rotated panel / Maingate Loading	120.0	45.0	2.4	2.4	2.4	25	14.5 26.3	90.0	6.4 6	3 44.0	381.4	681.3 6.0) 11.0	6.04	1.289	1.289	18.694	5.36	2044	0.75	20	Α	М		1464		9.20	Yes	18.64	7110	2.03	4.3E-06	1 in 336458
B80	Rotated panel / Maingate Loading	121.0	45.0	2.4	2.4	2.4	25	14.5 26.3	90.0	6.7 6	3 44.8	381.4	691.1 6.0) 11.0	6.04	1.289	1.289	18.694	5.48	2091	0.76	20	Α	М		1500		9.42	Yes	18.64	7110	1.98	8.4E-06	1 in 158049
B81	Rotated panel / Maingate Loading	122.0	45.0	2.4	2.4	2.4	25	14.5 26.3	90.0	6.6 6	3 44.6	381.4	687.9 6.0) 11.0	6.04	1.289	1.289	18.694	5.50	2098	0.75	20	Α	М		1504		9.45	Yes	18.64	7110	1.97	9.3E-06	1 in 142496
B82	Rotated panel / Maingate Loading	123.0	45.0	2.4	2.4	2.4	25	14.5 26.3	90.0	6.6 6	3 44.6	381.4	687.9 6.0	11.0	6.04	1.289	1.289	18.694	5.55	2115	0.75	20	Α	М		1517		9.52	Yes	18.64	7110	1.96	1.2E-05	1 in 110435
B83		113.0		2.4	2.4	2.4	25	12.6 8.9	90.0	6.4 7	2 63.3	112.1	305.9 5.3	3.7	3.71	0.828	0.868	10.936	7.71	864	0.72	21	Α	M		105		8.64	Yes	13.87	1556	1.60	1.4E-03	1 in 683
B84		113.5		2.4	2.4	2.4	25	13.0 8.6	90.0	6.6 7	2 63.9	111.8	309.7 5.4	3.6	3.58	0.796	0.832	10.821	7.86	879	0.74	22	Α	М		109		8.83	Yes	13.83	1546	1.57	2.2E-03	1 in 417
B85		113.8		2.4	2.4	2.4	25	12.8 9.0	90.0	6.4 6	3 60.8	115.2	293.8 5.3	3.8	3.75	0.826	0.862	11.028	7.25	836	0.73	23	Α	M		101		8.13	Yes	13.95	1607	1.71	3.8E-04	1 in 2982

Table A.3 Run 3 Page 3 16471.21 Pillar Stability Analysis

Table A.4: Pillar Stability Analysis

Location:

Run 4: Increase Run 2 Working Section Height to 3.0 m

Lake Macquarie Private Hospital Northern Expansion O'Brien Street, Gateshead Client: Akalan Projects 18/10/16 Date: NSW Pillar formula Sheet:

Analysis Assumptions: 16471.21 Project Number

Calculations by JAW

Key to Colour Coding of Factors of Safety / Width: Height Ratios

Greater than 3.0 Between 2.2 and 3.0 2.10 Between 1.8 and 2.2 Between 1.5 and 1.8 Less than 1.5

Indicating Pillar Located within Project Angle of Draw Indicating Pillar Located beneath site

The column	Analysis	Comment	Depth	Panel Width/Spar	1	1 -	Pillar Height	Unit	Pillar Det			adway D	eta Extract	1	otal w		Width/	Widt	th Modifier	Pillar	Pillar	Proportion		1	Abutment	Shed	Abutment	Pillar	Pillar			Power L		Probability
Part	ld:		D	(Longwall only)	Thickness	Section	Section	Weigth v		- 1		h1 h3	- 1	Area A				Θ.		l	1		Angle		1	Load				Squat	Strength			-
September 1969 1969 1969 1969 1969 1969 1969 196			(m)	(m)	(m)	(m)	(m)	(kN/m ³)		(m)	(°)	(m) (m	1) (%)	m ³	2		Nauo	~				R			1	MN	1			Oquat	(MPa)			
3.	A1		127.7	, ,	3.0	3.0	3.0	25	18.6	1.0	90.0	4.9 5.	2 32.2	576.6 8	50.7 6.	.2 10.3	6.20 1	1.250 1.	.250 23.250	4.71	2716	0.79	20						<u> </u>	Yes	17.40	10033	3.69	1.6E-16 1 in 100000
5. Martine, M. 19. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.							3.0	25			90.0																			Yes	16.65			
2. 1						~~~~~~~																												
24		l aligate Loading		22.0																				A	l l		1868		8.32					
2																																		
7. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.																	-																	
22 19	A8				3.0						90.0							1.227 1.	.191 19.892	4.95										Yes			·····	
NA SALE NA SAL	A9		121.4		3.0	3.0	3.0	25	17.0 2	7.6	90.0	5.0 5.3	3 35.2	469.2 7	23.8 5.	.7 9.2	5.67 1	1.238 1.	.209 20.548	4.68	2196	0.77	20							Yes	16.00	7508	3.42	8.6E-15 1 in 100000
AM S. C.																																		
AM S. M.							 																											
M. M																																		
AM S. M.																																		
M. M																																		
03. 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							 																											
24	A17		128.8		3.0	3.0	3.0	25	20.0 3	1.7	90.0	5.3 5.9	9 33.4	634.0 9	51.3 6.	.7 10.6	6.67 1	1.226 1	.226 24.526	4.83	3064	0.82	20							Yes	18.35	11632	3.80	3.7E-17 1 in 100000
25. September 19. September 19						~~~~~~~																												
24. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																																		
0.00																										ļ								
24. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																												······································						
14. St. St. St. St. St. St. St. St. St. St						~~~~~~~																												
194			-																					 										
94																										 								
24		Tailgate Loading		22.0	3.0			25	20.5 2	3.8	90.0							1.074 1.	.074 22.027				20	Α	Т		1610		8.47	Yes	17.55	8565		
22. 1		Tailgate Loading		22.0			3.0				90.0	+												Α	Т		2492		7.46	Yes			************************	······································
A. M. C.			-																											Yes				
AN PROPERTY OF THE PROPERTY OF																										ļ								
NAME																										ļ						<mark></mark>		
AN PART OF THE PAR																										-								
AM S.			-		_		+																											
No. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.																																		
Mary	A35										90.0	4		292.4 4	99.5 5.	.8 5.6	5.63	0.988 0.	.989 17.113		1521									Yes	14.62	4275		
AND 1240 30			126.5		3.0	3.0	3.0	25	20.0 1	6.1	90.0	5.4 5.	5 41.3	322.0 5	48.6 6.	.7 5.4	5.37	0.892 0	.892 17.839	5.39	1735	0.82	20							Yes	15.60	5022	2.89	1.6E-11 1 in 100000
AB				, , , , , , , , , , , , , , , , , , , ,																										Yes				
MAI Desire Contracting 130 8.0 10 10 10 10 10 10 10 10 10 10 10 10 10						~~~~~~~																												
ANT OPENSING CENT CARRAGE (1975) C. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1																										ļ								
M2		Double Goaf Loading		45.0																				Δ	G		4270	***************************************	9 25					
MAS		Double Cour Educing		40.0																						-	4270		0.20					
M6 1242 129 30 30 30 22 178 144 909 51 50 418 918											90.0														***************************************					Yes		5398		
MAR 1242	A44		125.1		3.0	3.0	3.0	25	17.8 1	6.4	90.0	5.0 5.0	6 41.8	291.9 5	01.6 5.	.9 5.5	5.47	0.959 0	.960 17.087	5.37	1569	0.78	20							Yes	14.70	4291	2.74	1.6E-10 1 in 100000
AFF 122 3,0 3,0 3,0 25 178 187 197 1900 5,4 5,3 48 187 1900 5,4 5,3 48 187 1900 5,5 6 187 1900 5						~~~~~~						+					**************													Yes				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Add																																		
A9																																		
ABO 182 30 30 30 25 178 81 86 80 90 51 52 46 55 81 41 404 2488 427 351 47 59 118 47 20 1 1 1 1 1 1 1 1 1				 																					_	 							·····	
A51				<u> </u>																				-		1	-							
AS2																																		
A54 1274 30 30 30 30 5 147 433 90 6 6 6 5 97 806 1058 49 148 40 149 129 189 189 257 148 149 273 27											90.0							0.590 0	.590 19.462	5.44										Yes				
A56		Tailgate Loading		22.0																				Α	T		2454		9.77					
ASS 1248 30 30 30 30 30 30 30 25 130 145 900 62 81 579 818 4474 43 481 431 578 578 818 4474 43 481 431 578 481 431																								ļ	ļ	ļ								
ASS 127 3.0					_																			<u> </u>	-	ļ	-							
ASS Double Confloading 125.1																																		
ASO Double Goaf Loading 1303 22.0 3.0 3.0 3.0 25 14.6 38.6 90.0 6.2 6.6 41.3 406.2 692.3 50 9.0 5.0 14.8 18.3 17.850 5.55 2255 0.74 2.0 A G 2059 10.62 Yes 14.75 5.991 1.39 17.6-02 11.652 A00 Taigste Loading 129.8 22.0 3.0 3.0 3.0 25 14.6 38.6 90.0 6.3 6.3 90.0 6.2 6.0 39.5 63.6 192.9 49.1 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1						~~~~~~~																												
A60 Tailgate Loading 129.8 22.0 3.0 3.0 3.0 25 14.6 38.6 90.0 62 6.0 39.3 563.6 927.7 4.9 12.9 487 1451 1.261 18.406 5.34 3010 0.73 20 A T 2391 9.58 No 15.10 8507 1.57 2.0E-03 11.468 1.261 18.406 9.0		Double Goaf Loading		22.0																				Α	G	<u> </u>	2059		10.62				C A CONTROL CO	
A62											90.0							1.451 1.	.261 18.406			0.73		Α	T					No	15.10	8507	************	
A63 1300 30 30 30 30 30 30							3.0																							No				
A64 Double-Goaf-Loading 127.3																																		
A66 Double Goaf Loading 125.1 45.0 3.0 3.0 3.0 25 20.7 24.5 90.0 88.9 5.3 84.5 507.2 3266.1 6.9 8.2 6.90 1.084 1.084 22.440 20.14 10215 1.75 20 A G 3158 26.37 Yes 17.80 90.27 4.0E+00 #NUM! A66 Maingate Loading 127.9 45.0 3.0 3.0 3.0 3.0 25 16.2 24.3 90.0 37.2 57 75.4 393.7 1602.0 5.4 8.1 54.9 1.094																										ļ							************	
A66 Maingate Loading		Double Coaf Loading		45.0																						 	2150		26.27					
A67 Meingate Loading 127.9 45.0 3.0 3.0 25 16.2 24.3 90.0 37.2 57.7 75.4 99.7 75.4 99.7 75.4 99.7 75.4 99.7 75.4 99.7 160.2 5.4 8.1 5.40 1.20 1.00 20 A M 3419 21.70 Yes 15.17 5973 4.0E+00 #NUM! A68 Maingate Loading 122.1 22.0 3.0 3.0 25 16.0 35.4 90.0 5.3 5.1 34.3 566.4 862.7 5.3 11.8 5.33 1.377 1.283 20.525 4.65 2633 0.76 20 A M 1150 6.68 Yes 15.87 8991 2.38 2.8E-0.8 1in 1000000 A69 122.1 3.0 3.0 3.0 2.5 16.9 19.2 90.0 5.6 6.5 48.1 5.40 1.05 1.05 1.05 1.05																										 							•	
A68 Maingate Loading 12.1 22.0 3.0 3.0 3.0 3.0 25 16.0 35.4 90.0 5.3 5.1 34.3 566.4 862.7 5.3 11.8 5.33 1.77 1.283 20.525 4.65 2633 0.76 20 A M 1150 6.68 Yes 15.87 8991 2.38 2.8E-0.8 1 in 1000000 A70 12.1 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0																																	************	
A69 122.1 3.0 3.0 3.0 3.0 25 17.4 19.4 90.0 5.6 6.5 43.3 337.6 595.7 5.8 6.5 580 1.054 1.051 18.281 5.39 1818 0.79 20			-																															
A70 122.1 3.0 3.0 3.0 3.0 25 16.9 19.2 90.0 5.4 6.5 43.4 324.5 573.1 5.6 6.4 5.63 1.064 1.056 17.842 5.39 17.49 0.78 20 17.49						~~~~~~~~~~								~							~										~~~~~~			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A72 120.6 3.0 3.0 3.0 3.0 25 16.9 19.2 90.0 5.0 6.5 42.3 324.5 562.8 5.6 6.4 5.63 1.064 1.056 17.842 5.23 1697 0.77 20 Yes 14.87 4827 2.84 3.3E-11 1 in 1000000							+				90.0							1.064 1.	.056 17.842															
					3.0		3.0	25			90.0	4		324.5 5	60.3 5.	.6 6.4				5.23	1698		20							Yes	14.87	4827	2.84	3.4E-11 1 in 100000
A73 Maingate Loading 124.2 22.0 3.0 3.0 3.0 25 16.5 31.9 90.0 5.3 4.7 34.0 526.4 797.9 5.5 10.6 5.50 1.318 1.259 20.771 4.71 2477 0.76 20 A M 1068 6.74 Yes 16.02 8432 2.38 2.7E-08 1 in 10000000																																		
	A73	Maingate Loading	124.2	22.0	3.0	3.0	3.0	25	16.5	1.9	90.0	5.3 4.	7 34.0	526.4 7	97.9 5.	.5 10.6	5.50 1	1.318 1.	.259 20.771	4.71	2477	0.76	20	Α	M		1068		6.74	Yes	16.02	8432	2.38	2.7E-08 1 in 100000

Table A.4: Pillar Stability Analysis

Project:

Location:

Analysis Assumptions:

Run 4: Increase Run 2 Working Section Height to 3.0 m

Akalan Projects Lake Macquarie Private Hospital Northern Expansion O'Brien Street, Gateshead Client: 18/10/16 Date: NSW Pillar formula Sheet:

16471.21 Calculations by JAW

Project Number

Key to Colour Coding of Factors of Safety / Width: Height Ratios Greater than 3.0 Between 2.2 and 3.0 2.10 Between 1.8 and 2.2 Indicating Pillar Located within Project Angle of Draw 1.70 Between 1.5 and 1.8 Indicating Pillar Located beneath site

1.20 Less than 1.5

Analysis	Comment	Depth	Panel Width/Span	Seam	Working	ng Pillar Heigh	t Unit	Pillar Details	13/	adwav D	eta Extract	t. Pillar	Total	w1/ v	w2/H Wid	dth/	Width N	Andifier	Pillar	Pillar	Proportion	Abutment		Abutment	Shed	Abutment	Pillar	Pillar			Power	Law		Probabili	itv/
ld:	Comment	Бериі	(Longwall only)	1	Section	~ i	Weigth		Internal	auway D	Ratio				leight Hei	_	VVIGUTIV	wΘ	Stress	Load	Abutment	Angle	Abut (A)	Loading	Load	Load	Stress (MPa)	Stress		Strength			Probability	y of Failur	· II
	!	D			Н	н	γ	w1 w2	15.0	b1 b2	- 1		3		Ratio Ra	tio O	- Θ		(Tributary)) transfer	۰	Yield (Y)	Туре		Received	("Yield")	("Abut")	Squat		Load	, l	of Failure		
		(m)	(m)	(m)	(m)	(m)	(kN/m³)	(m) (m)		(m) (m		m ³			w2/H			Width	(MPa)	MN	R		(?)	M,T,G	MN	MN	φ _g = 0.7	(MPa)		(MPa)	MN			Formula	
A74		122.3		3.0	3.0	3.0	25	16.4 17.4		5.5 5.				~~~~	5.8 5.4			4 16.798		1513	0.77	20						~~~~~	Yes	14.37	4099	***************************************	2.3E-10	1 in 10000	
A75 A76		121.8 121.8		3.0	3.0	3.0	25 25	16.6 16.9 16.6 17.1		5.2 5. 4.8 5.		283.9			5.6 5. 8 5. 7 5. 8			8 16.725 3 16.808	5.28 5.23	1480 1486	0.77	20							Yes Yes	14.36 14.39	4027 4085		2.0E-10 1.3E-10	1 in 10000	
A77		121.2		3.0	3.0	3.0	25	16.6 17.0		5.0 5.		_			5.7 5.4			0 16.767	5.10	1440	0.76	20							Yes	14.37	4056		4.9E-11	1 in 10000	
A78	Maingate Loading	121.8	22.0	3.0	3.0	3.0	25	16.5 29.9		5.3 4.					10.0 5.5			5 20.385	4.62	2277	0.77	20	Α	М		985		6.61	Yes	15.87	7828		2.0E-08	1 in 10000	
A79		121.9		3.0	3.0	3.0	25	16.2 17.6		6.6 5.		285.1		5.4	5.9 5.4	40 1.04	1.03	3 16.735	5.58	1591	0.79	20							Yes	14.32	4083	2.57	1.8E-09	1 in 10000	00
A80	Tailgate Loading / Double Goaf	125.6	45.0	3.0	3.0	3.0	25	18.5 31.5		23.2 5.					10.5 6.1			0 23.310	8.20	4779	0.98	20	Α	G		3888		14.87	Yes	17.40	10138		1.8E-01	1 in 6	
A81 B1		121.8 121.2		3.0	3.0	3.0	25 25	15.4 17.5 17.2 15.9		5.2 5. 5.4 6.		269.5			5.8 5. 3 5. 3	_		5 16.093 4 16.583	5.26 5.66	1418 1548	0.74	20							Yes	13.99 14.37	3771 3931		4.8E-10 2.7E-09	1 in 10000	
B2		120.6		3.0	3.0	3.0	25	16.8 15.9		5.4 6.			1 501.7		5.3 5.3			6 16.399	-	1513	0.78	20							Yes	14.37	3803		3.9E-09	1 in 10000	
B3		120.1		3.0	3.0	3.0	25	16.0 15.4		5.4 6.			4 472.9		5.1 5.1			5 15.762		1420	0.76	20							Yes	13.87	3418		1.8E-08	1 in 10000	
B4		120.2		3.0	3.0	3.0	25	17.3 15.7	90.0 5	5.4 5.	.0 42.2	271.6	6 469.9	5.8	5.2 5.2	23 0.9	52 0.95	5 16.525	5.20	1412	0.79	20							Yes	14.36	3901	2.76	1.1E-10	1 in 10000	00
B5		119.6		3.0	3.0	3.0	25	16.9 15.8		5.4 5.			463.8		5.3 5.2			0 16.400	5.19	1387	0.78	20							Yes	14.25	3805		1.4E-10	1 in 10000	
B6		119.2		3.0	3.0	3.0	25	17.3 16.1		5.4 5. 5.4 5.					5.4 5.3			7 16.726	5.12	1427	0.79	20							Yes	14.45	4025	****	4.7E-11	1 in 10000	
B7 B8		118.6 119.0		3.0	3.0	3.0	25 25	18.3 24.6 18.1 24.9		5.4 5.			7 707.4		8.2 6. 3 6. 0			7 20.987 8 20.962	4.65	2094 2104	0.81	20			-				Yes	16.44	7400 7383		1.6E-15 2.4E-15	1 in 10000	
B9		120.0	***************************************	3.0	3.0	3.0	25	18.0 24.9		5.4 5.			2 704.3		8.3 6.0			1 20.895	4.71	2113	0.80	20							Yes	16.33	7320		4.5E-15	1 in 10000	
B10		121.3		3.0	3.0	3.0	25	18.8 24.7		5.4 5.			723.6		8.2 6.2			6 21.350		2194	0.81	20							Yes	16.72	7762		1.6E-15	1 in 10000	
B11	Maingate Loading	121.8	22.0	3.0	3.0	3.0	25	15.2 40.0		6.1 4.		608.0	954.2	5.1	13.3 5.0			1 19.627	4.78	2906	0.76	20	Α	М		1310		6.93	Yes	15.48	9411	000.00000000000000000000000000000000000	2.2E-07	1 in 10000	00
B12		121.0		3.0	3.0	3.0	25	18.6 19.0		5.4 5.			4 580.8		6.3 6.2	20 1.0		1 18.798	4.97	1757	0.81	20							Yes	15.61	5518		4.7E-13	1 in 10000	
B13 B14		119.7 118.4		3.0	3.0	3.0	25 25	16.8 18.7 17.2 18.7		5.4 5.5 5.4 5.5					6.2 5. 0			6 17.577 8 17.854	5.05 4.97	1588 1599	0.78	20							Yes	14.75 14.92	4633 4800		1.2E-11 3.4E-12	1 in 10000	~~~~
B14 B15		118.4		3.0	3.0	3.0	25	17.2 18.7 17.3 19.5		5.4 5.		321.6			6.5 5.7			5 18.252	4.97	1650	0.79	20							Yes Yes	14.92	5097		9.8E-13	1 in 10000	
B16		119.0		3.0	3.0	3.0	25	63.4 42.3		5.4 5.			8 3268.0		14.1 14.			0 50.744	3.63	9722	1.01	20							Yes	99.66	267280		3.0E-165	1 in 10000	
B17		119.7		3.0	3.0	3.0	25	16.1 31.1	90.0 5	5.5 5.	.7 37.0	500.7	_		10.4 5.3			3 20.016	4.75	2379	0.77	20							Yes	15.68	7851		4.7E-14	1 in 10000	_
B18	Tailgate Loading	119.9	22.0	3.0	3.0	3.0	25	16.7 31.1		5.6 5.		519.4			10.4 5.5			3 20.920	4.74	2460	0.78	20	Α	T		1803		8.21	Yes	16.10	8364		1.1E-05	1 in 1187	
B19	Maingate Loading	120.0	45.0	3.0	3.0	3.0	25	17.5 31.3		5.6 5.					10.4 5.8			5 22.140		2564	0.80	20	A	M		1723		7.83	Yes	16.71	9154		9.0E-07	1 in 10000	
B20 B21	Maingate Loading	119.5 119.3	45.0	3.0	3.0	3.0	25 25	17.5 31.4 16.8 31.1		5.6 4.5 5.8 4.5		549.5			10.5 5.8			7 22.164 4 21.069	4.56 4.64	2505 2427	0.80	20	Α	M		1683		7.62	Yes Yes	16.72 16.18	9188 8452		3.9E-07 3.4E-15	1 in 10000	
B21		119.3		3.0	3.0	3.0	25	16.0 30.9		5.5 0.		494.4			10.4 5.0			9 19.829	4.04	2037	0.79	20							Yes	15.60	7711		4.4E-17	1 in 10000	
B23		119.1		3.0	3.0	3.0	25	13.2 15.0		5.7 5.					5.0 4.4			9 13.587	5.85	1159	0.71	20							No	12.93	2560		3.2E-07	1 in 10000	
B24		118.2		3.0	3.0	3.0	25	12.9 10.3	90.0 5	5.7 5.	.4 54.5	132.9	9 292.0	4.3	3.4 3.4	43 0.8	88 0.95	0 12.252	6.49	863	0.70	20							No	12.27	1630	1.89	3.1E-05	1 in 3768	,2
B25		117.5		3.0	3.0	3.0	25	13.8 10.1		6.1 5.			4 308.5		3.4 3.3			4 12.616	6.50	906	0.74	20							No	12.45	1735		2.1E-05	1 in 5674	
B26		116.8		3.0	3.0	3.0	25	13.6 9.9		6.6 5. 6.1 5.			309.1		3.3 3.3			6 12.460		902	0.74	20							No	12.37	1666		5.8E-05	1 in 1966	
B27 B28		116.0 115.2		3.0	3.0	3.0	25 25	14.0 9.6 13.8 10.0		5.6 5.					3.2 3.2 3.3 3.3			2 12.484 1 12.577	6.51	874 860	0.74	20 20							No No	12.38 12.43	1664 1715		2.5E-05 6.9E-06	1 in 4734	
B29		114.5		3.0	3.0	3.0	25	13.6 13.4		5.6 5.					4.5 4.4			6 13.548	5.64	1028	0.73	20							No	12.91	2353		9.8E-08	1 in 10000	
B30		115.3		3.0	3.0	3.0	25	13.9 13.6	90.0	6.1 5.	.3 50.0	189.0	378.0	4.6	4.5 4.5	53 0.98	89 0.99	4 13.817	5.76	1090	0.74	20							No	13.04	2465	2.26	1.4E-07	1 in 10000	000
B31		116.0		3.0	3.0	3.0	25	12.8 14.0		6.6 5.					4.7 4.1			9 13.039	6.06	1086	0.73	20							No	12.66	2269		1.7E-06	1 in 9665	
B32		116.7		3.0	3.0	3.0	25	14.0 14.1		6.1 5. 5.7 5.			1 389.9		4.7 4.6			2 14.028	5.76	1138	0.74	20		***************************************					No	13.14	2594	****	1.1E-07 4.9E-07	1 in 10000	
B33 B34		117.4		3.0	3.0	3.0	25 25	12.9 14.0 15.6 30.9		5.5 5.			359.0		4.7 4.3 10.3 5.2			8 13.126 2 19.218	5.83 4.65	1054 2240	0.71	20							No Yes	12.70 15.32	7387		4.9E-07 4.9E-14	1 in 10000	
B35		118.0		3.0	3.0	3.0	25	16.9 30.2		5.8 5.					10.1 5.6			4 21.023	4.62	2357	0.79	20							Yes	16.17	8255		2.6E-15	1 in 10000	
B36	Maingate Loading	118.1	45.0	3.0	3.0	3.0	25	17.3 29.9	90.0	5.6 5.	.0 35.3	517.3	3 799.2	5.8	10.0 5.7	77 1.20	67 1.24	4 21.519	4.56	2360	0.80	20	Α	М	***************************************	1591		7.64	Yes	16.43	8501	2.15	7.1E-07	1 in 10000)00
B37	Maingate Loading	117.3	45.0	3.0	3.0	3.0	25	17.3 30.6		5.7 4.			4 807.3		10.2 5.7			4 21.686	4.47	2367	0.80	20	Α	М		1597		7.49	Yes	16.50	8734		3.4E-07	1 in 10000	
B38		117.2		3.0	3.0	3.0	25	17.0 30.6 12.8 11.2		5.8 4. 5.7 4.					10.2 5.6		_	0 21.255	-	2345	0.80	20							Yes	16.28	8469		5.4E-16	1 in 10000	
B39 B40		115.9 113.8		3.0	3.0	3.0	25 25	12.8 11.2 13.2 11.6		6.1 4.	.9 51.9 .9 51.9		1 297.9 1 318.5		3.7 3.1			1 12.433 9 12.796		863 906	0.71	20 20							No No	12.36 12.54	1772 1920		3.0E-06 1.1E-06	1 in 5202	
B41	Double Goaf Loading	121.0	45.0	3.0	3.0	3.0	25	17.0 37.8		5.4 5.			958.7		12.6 5.6			1 22.629		2900	0.78	20	Α	G		4338		11.26	Yes	16.81	10801	· · · · · · · · · · · · · · · · · · ·	5.2E-03	1 in 170	
B42	Double Goaf Loading	122.0	45.0	3.0	3.0	3.0	25	18.1 30.0	90.0	5.3 4.	.8 33.3	543.0	814.3	6.0	10.0 6.0	03 1.24	47 1.24	7 22.578	4.57	2484	0.80	20	Α	G		3566		11.14	Yes	17.01	9238	1.53	3.5E-03	1 in 258	}
B43	Double Goaf Loading	123.0	45.0	3.0	3.0	3.0	25	17.9 35.2		5.8 4.			1 943.3		11.7 5.9			2 23.658		2901	0.80	20	Α	G		4123		11.15	Yes	17.37	10948		2.4E-03	1 in 381	
B44	Maingate Loading	124.0	22.0	3.0	3.0	3.0	25	18.3 31.3		5.8 4.			865.2					2 23.096		2682	0.81	20	A	M		1128		6.65	Yes	17.26	9887		1.2E-09	1 in 10000	
B45 B46	Tailgate Loading Tailgate Loading	125.0 128.0	4 5.0 22.0	3.0	3.0	3.0	25 25	17.1 16.6 21.6 15.8		5.0 11 10.0 5.			621.0 3 669.9		5.5 5.6 5.3 5.1			7 16.871 5 18.250		1941 2144	0.77	20 20	A	Ŧ		2528 1119		9.56	Yes Yes	14.49 16.36	4112 5584		4.0E+00 4.0E-04	#NUM! 1 in 284	
B47	Tailgate Loading Tailgate Loading	127.7	45.0	3.0	3.0	3.0	25	20.6 15.8		8.9 5.			5 628.4		5.3 5.2			8 17.884		2006	0.88	20	A	T		1971		12.22	Yes	15.82	5149		4.0E-04 4.9E-02	1 in 20	
B48	Maingate Loading	126.0	45.0	3.0	3.0	3.0	25	9.2 12.3	90.0 1	11.0 6.	0 69.4		2 369.7		4.1 3.0			3 9.228	10.29	1164	0.73	20	A	M		941	•	18.61	No	10.61	1201	······································	4.0E+00	#NUM!	
B49	Rotated Panel / Double Goaf	125.0	22.0	3.0	3.0	3.0	25	13.0 8.2		5.0 6.			257. 4		2.7 2.			2 11.598		804	0.68	20	A	М		368		11.00	No	11.93	1271	····	4.0E+00	#NUM!	
B50	Maingate Loading / Double Goaf	123.0	45.0	3.0	3.0	3.0	25	24.8 15.2		5.0 5.			628.8		5.1 5.0			0 18.848		1933	0.89	20	A	G		2186		10.93	Yes	18.16	6847	****************	8.2E-04	1 in 145	
B51 B52	Rotated Panel / Double Goaf Rotated Panel / Double Goaf	123.5 124.0	45.0 45.0	3.0	3.0	3.0	25 25	15.0 26.8 15.0 26.8		5.7 5. 5.7 5.			0 668.6		8.9 5.0			0 17.704 0 17.704		2064	0.74	20	A	G G		3365 3383		13.50 13.57	Yes	14.80	5949 5949		3.1E-01 3.2E-01	1 in 4 1 in 4	
B52	Rotated Panel / Double Goaf	124.0	45.0	3.0	3.0	3.0	25	15.0 26.8		5.7 6.			0 679.0					0 17.704		2115	0.74	20	A	G		3457		13.57	Yes	14.80	5949		3.2E-01	1 in 4	~~~~
B54	Rotated Panel / Double Goaf	124.8	45.0	3.0	3.0	3.0	25	15.0 26.8		5.7 5.			674.8		·······			0 17.704		2105	0.74	20	A	G		3443		13.80	Yes	14.80	5949	• 	3.5E-01	1 in 3	
B55	Rotated Panel / Maingate Load	125.0	45.0	3.0	3.0	3.0	25	15.0 26.8		5.7 5.		402.0	674.8	5.0	8.9 5.0			0 17.704		2109	0.74	20	Α	М		1490		8.95	Yes	14.80	5949		9.3E-04	1 in 129	
B56	Double Goaf Loading	123.0	45.0	3.0	3.0	3.0	25	24.2 15.4		5.0 5.			7 607.4		5.1 5.1			8 18.822		1868	0.88	20	Α	G		2155		10.79	Yes	17.83	6645		9.5E-04	1 in 127	
B57	Double Goaf Loading	122.0	45.0	3.0	3.0	3.0	25	25.5 22.0		5.0 5.1 5.3 5.1			829.6		7.3 7.3			6 23.621		2530	0.90	20	A	G		2787		9.48	Yes	20.82			3.8E-07	1 in 10000	
B58 B59	Tailgate Loading Rotated Panel / Double Goaf	121.0 121.5	45.0 45.0	3.0	3.0	3.0	25 25	24.5 16.6 16.8 26.6		5.8 5.			7 667.5 9 723.2		5.5 5. 6 8 .9 5 .6			8 19.791 3 20.042		2019 2197	0.89	20 20	A A	T G		1930 3261		9.71 12.21	Yes Yes	18.46 15.77	7506 7047		2.6E-05 5.1E-02	1 in 4532 1 in 19	
B60	Rotated Panel / Double Goaf	121.5	45.0	3.0	3.0	3.0	25	16.8 26.6		5.8 5.			9 723.2		8.9 5.6			3 20.042		2206	0.78	20	A	G		3279		12.27	Yes	15.77	7047		5.1E-02 5.5E-02		
B61	Rotated Panel / Double Goaf	123.0	45.0	3.0	3.0	3.0	25	16.8 26.6		5.8 6.			741.3		8.9 5.6			3 20.042		2279	0.78	20	A	G		3398		12.70	Yes	15.77	7047		9.0E-02		
B62	Rotated Panel / Double Goaf	123.5	45.0	3.0	3.0	3.0	25	16.8 26.6		5.8 6.		446.9	736.8	5.6	8.9 5.6			3 20.042		2275	0.78	20	Α	G		3396		12.69	Yes	15.77	7047		8.9E-02		
B63	Rotated Panel / Double Goaf	124.0	45.0	3.0	3.0	3.0	25	16.8 26.6		5.8 6.			743.5		8.9 5.6			3 20.042		2305	0.78	20	Α	G		3446		12.87	Yes	15.77	7047		1.1E-01	1 in 10	
B64 B65	Rotated Panel / Double Goaf Double Goaf Loading	125.5 120.0	45.0 45.0	3.0	3.0	3.0	25 25	16.8 26.0 19.8 15.5		5.8 6. 7.5 6.			3 725.5 9 589.7		8.7 5. 6 5. 2 5. 1			4 19.888 8 17.388		2276 1769	0.78	20 20	A A	G G		3416 2165		13.03 12.82	Yes Yes	15.71 15.33	6861 4706		1.2E-01 1.4E-01	1 in 9 1 in 8	
500	Double Guar Luauffly	120.0	1 40.0	J 3.0	1 3.0		1 23	10.0 10.0	30.0	1.5 6.	+0.0	300.8	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.0	J.Z J.	0.6	. 0 0.0/	0 17.308	1 5.76	1,09	1 0.00			G	L	2100	L	12.02	168	10.00	+700	1.20	1.76-01	1 11110	

Table A.4: Pillar Stability Analysis

Run 4: Increase Run 2 Working Section Height to 3.0 m

Client: Date: Akalan Projects 18/10/16 Project: Location: Lake Macquarie Private Hospital Northern Expansion O'Brien Street, Gateshead

Analysis Assumptions: NSW Pillar formula Sheet:

Project Number 16471.21 Calculations by JAW

Key to Colour Coding of Factors of Safety / Width: Height Ratios

4.50	Greater than 3.0
2.40	Between 2.2 and 3.0
2.10	Between 1.8 and 2.2
1.70	Between 1.5 and 1.8
4.00	1 H 4 F

Indicating Pillar Located within Project Angle of Draw Indicating Pillar Located beneath site

Analysis	Comment	Depth	Panel Width/Span	Seam	Working	Pillar Heigl	ht Unit	Pillar Details		adway Det	Extract.	Pillar	Total w1/	w2/H Wid	tth/	Width Mo	odifier	Pillar	Pillar	Proportion	Abutment		Abutment	Shed	Abutment	Pillar	Pillar			Power I	Law		Probability
ld:			(Longwall only)	Thickness	Section	Section	Weigth	Width Length	Internal		Ratio	Area	Area Heigh	t Height Hei	ght		wΘ	Stress	Load	Abutment	Angle	Abut (A)	Loading	Load	Load	Stress (MPa)	Stress		Strength	"Ultimate"	FoS F	Probability	of Failure
		D			Н	Н	γ	w1 w2	Angle	b1 b2			Ratio	Ratio Ra	tio Θ_0	Θ	Effective	(Tributary)	(Tributary)	transfer	۰	Yield (Y)	Type		Received	("Yield")	("Abut")	Squat		Load	(of Failure	NSW Power
		(m)	(m)	(m)	(m)	(m)	(kN/m ³	(m) (m)	(°)	(m) (m)	(%)	m ³	m ³ w1/F	w2/H			Width	(MPa)	MN	R		(?)	M,T,G	MN	MN	$\phi_g = 0.7$	(MPa)		(MPa)	MN			Formulae
B66	Double Goaf Loading	119.5	45.0	3.0	3.0	3.0	25	24.7 16.2	90.0	5.5 5.0	37.5	400.1	640.2 8.2	5.4 5.4	0.79	2 0.792	19.567	4.78	1913	0.90	20	Α	G		2113		10.06	Yes	18.46	7386	1.83	6.8E-05	1 in 16681
B67	Tailgate Loading	119.0	45.0	3.0	3.0	3.0	25	24.7 16.2	90.0	5.5 5.2	38.1	400.1	646.3 8.2	5.4 5. 4	0.79	2 0.792	19.567	4.81	1923	0.90	20	Α	Т		1803		9.31	Yes	18.46	7386	1.98	8.1E-06	1 in 164699
B68	Rotated Panel / Double Goaf	120.0	45.0	3.0	3.0	3.0	25	16.0 27.0	90.0	5.2 5.8	37.9	432.0	695.4 5.3	9.0 5.3	1.25	6 1.194	19.101	4.83	2086	0.76	20	Α	G		3287		12.44	Yes	15.30	6610	1.23	1.0E-01	1 in 11
B69	Rotated Panel / Double Goaf	120.0	45.0	3.0	3.0	3.0	25	16.0 27.0	90.0	5.2 5.8	37.9	432.0	695.4 5.3	9.0 5.3	1.25	6 1.194	19.101	4.83	2086	0.76	20	Α	G		3287		12.44	Yes	15.30	6610	1.23	1.0E-01	1 in 11
B70	Rotated Panel / Double Goaf	120.0	45.0	3.0	3.0	3.0	25	16.0 27.0	90.0	5.2 5.6	37.5	432.0	691.1 5.3	9.0 5.3	1.25	6 1.194	19.101	4.80	2073	0.76	20	Α	G		3267		12.36	Yes	15.30	6610	1.24	9.4E-02	1 in 12
B71	Rotated Panel / Double Goaf	120.0	45.0	3.0	3.0	3.0	25	16.0 27.0	90.0	5.2 5.7	37.7	432.0	693.2 5.3	9.0 5.3	1.25	6 1.194	19.101	4.81	2080	0.76	20	Α	G		3277		12.40	Yes	15.30	6610	1.23	9.8E-02	1 in 11
B72	Rotated Panel / Double Goaf	120.0	45.0	3.0	3.0	3.0	25	16.0 27.0	90.0	5.2 5.7	37.7	432.0	693.2 5.3	9.0 5.3	3 1.25	6 1.194	19.101	4.81	2080	0.76	20	Α	G		3277		12.40	Yes	15.30	6610	1.23	9.8E-02	1 in 11
B73	Rotated Panel / Double Goaf	120.0	45.0	3.0	3.0	3.0	25	16.0 27.0	90.0	5.2 5.9	38.1	432.0	697.5 5.3	9.0 5.3	1.25	6 1.194	19.101	4.84	2092	0.76	20	Α	G		3297		12.48	Yes	15.30	6610	1.23	1.1E-01	1 in 10
B74	Double Goaf Loading	118.2	45.0	3.0	3.0	3.0	25	25.3 15.5	90.0	5.5 5.3	38.8	392.2	640.6 8.4	5.2 5.1	7 0.76	0.760	19.223	4.83	1893	0.91	20	Α	G		2043		10.04	Yes	18.63	7305	1.86	5.0E-05	1 in 22922
B75	Double Goaf Loading	118.0	45.0	3.0	3.0	3.0	25	25.1 15.5	90.0	5.5 5.8	40.3	389.1	651.8 8.4	5.2 5.1	7 0.76	4 0.764	19.165	4.94	1923	0.91	20	Α	G		2087		10.31	Yes	18.49	7192	1.79	1.2E-04	1 in 9113
B76	Maingate Loading	117.0	45.0	3.0	3.0	3.0	25	26.4 15.6	90.0	5.5 5.3	38.2	411.8	666.7 8.8	5.2 5.2	0.74	3 0.743	19.611	4.74	1950	0.92	20	Α	M		1090		7.38	Yes	19.47	8020	2.64	6.5E-10	1 in 1000000
B77	Rotated panel / Maingate Loading	118.0	45.0	3.0	3.0	3.0	25	15.4 27.7	90.0	5.7 5.3	38.7	426.6	696.3 5.1	9.2 5.1	3 1.28	5 1.195	18.410	4.82	2054	0.76	20	Α	M		1440		8.19	Yes	14.99	6392	1.83	7.3E-05	1 in 15475
B78	Rotated panel / Maingate Loading	119.0	45.0	3.0	3.0	3.0	25	15.3 27.3	90.0	5.6 5.3	38.7	417.7	681.3 5.1	9.1 5.1	0 1.28	2 1.190	18.203	4.85	2027	0.75	20	Α	M		1423		8.26	Yes	14.90	6222	1.80	1.1E-04	1 in 10545
B79	Rotated panel / Maingate Loading	120.0	45.0	3.0	3.0	3.0	25	15.5 27.3	90.0	5.4 5.3	37.9	423.2	681.3 5.2	9.1 5.1	7 1.27	6 1.192	18.480	4.83	2044	0.75	20	Α	M		1428		8.20	Yes	15.02	6355	1.83	7.3E-05	1 in 15669
B80	Rotated panel / Maingate Loading	121.0	45.0	3.0	3.0	3.0	25	15.5 27.3	90.0	5.7 5.3	38.8	423.2	691.1 5.2	9.1 5.1	7 1.27	6 1.192	18.480	4.94	2091	0.76	20	Α	M		1463		8.40	Yes	15.02	6355	1.79	1.3E-04	1 in 8450
B81	Rotated panel / Maingate Loading	122.0	45.0	3.0	3.0	3.0	25	15.5 27.3	90.0	5.6 5.3	38.5	423.2	687.9 5.2	9.1 5.1	7 1.27	6 1.192	18.480	4.96	2098	0.75	20	Α	M		1467		8.42	Yes	15.02	6355	1.78	1.4E-04	1 in 7767
B82	Rotated panel / Maingate Loading	123.0	45.0	3.0	3.0	3.0	25	15.5 27.3	90.0	5.6 5.3	38.5	423.2	687.9 5.2	9.1 5.1	7 1.27	6 1.192	18.480	5.00	2115	0.75	20	Α	M		1479		8.49	Yes	15.02	6355	1.77	1.8E-04	1 in 6309
B83		113.0		3.0	3.0	3.0	25	13.6 9.9	90.0	5.4 6.2	56.0	134.6	305.9 4.5	3.3 3.3	0.84	3 0.916	12.460	6.42	864	0.72	21	Α	M		89		7.08	No	12.37	1666	1.75	2.4E-04	1 in 4733
B84		113.5		3.0	3.0	3.0	25	14.0 9.6	90.0	5.6 6.2	56.6	134.4	309.7 4.7	3.2 3.2	0.81	4 0.892	12.484	6.54	879	0.74	22	Α	M		92		7.23	No	12.38	1664	1.71	3.9E-04	1 in 2941
B85		113.8		3.0	3.0	3.0	25	13.8 10.0	90.0	5.4 5.3	53.0	138.0	293.8 4.6	3.3 3.3	0.84	0 0.911	12.577	6.06	836	0.73	23	Α	М		85		6.67	No	12.43	1715	1.86	4.6E-05	1 in 25244

Table A.4 Run 4 Page 3 16471.21 Pillar Stability Analysis

Table A.5: Pillar Stability Analysis

Project Number

Run 5: Decrease Run 2 Pillars by 1 m and increase working section to 3.0 m

Lake Macquarie Private Hospital Northern Expansion O'Brien Street, Gateshead Akalan Projects Project: Client: 18/10/16 Location: Date:

Analysis Assumptions: NSW Pillar formula Sheet: 16471.21 Calculations by JAW Key to Colour Coding of Factors of Safety / Width: Height Ratios

Greater than 3.0 Between 2.2 and 3.0 2.10 Between 1.8 and 2.2 Between 1.5 and 1.8 Less than 1.5

Indicating Pillar Located within Project Angle of Draw Indicating Pillar Located beneath site

Analysis	Comment	Depth	Panel Width/Span	Seam	Worki	ing Pillar	r Height I	Jnit	Pillar Details		adway [Deta Extrac	t. Pilla	r Total	w1/	w2/H Widt	h/	Width Mod	difier	Pillar	Pillar	Proportion	Δhutment		Abutment	Shed	Abutment	Pillar	Pillar			Power L	l aw	$\overline{}$	Probability
Id:	Confinent	Бериі	(Longwall only)	Thickness	1	٧,	~		Width Length	Internal	auway L	Ratio				leight Heig		VVIGUT IVIOC	wΘ	Stress	Load	Abutment	Angle	Abut (A)	Loading	Load	Load	Stress (MPa)	Stress		Strength			robability	of Failure
		D			н		Н	γ	w1 w2	Angle	b1 b	b2			Ratio I	Ratio Rati	o Θ ₀) ₀ Θ	Effective	(Tributary)	(Tributary)) transfer	۰	Yield (Y)	Туре		Received	("Yield")	("Abut")	Squat		Load	o'	f Failure	NSW Power
		(m)	(m)	(m)	(m)		(111)	V/m³)	(m) (m)	(°)	(m) (, (,0)	m ³			w2/H		<u> </u>	Width	(MPa)	MN	R		(?)	M,T,G	MN	MN	фg= 0.7	(MPa)		(MPa)	MN			Formulae
A1 A2		127.7 126.7		3.0	3.0			25	17.6 30.0 16.4 30.5	90.0	5.9 6 6.2 6			0 850.7 2 827.2		10.0 5.87	7 1.26 7 1.30	61 1.248		5.14	2716	0.79	20		***************************************					Yes	16.66	8798		1.1E-13 2.4E-12	1 in 1000000
A2 A3		126.7		3.0	3.0			25 25	18.1 30.4	90.0	6.3 6			2 897.9		10.2 5.4 7	1.30		20.357	5.24 5.17	2619 2843	0.77	20			-				Yes	15.84 17.06	7926 9385		4.7E-14	1 in 1000000 1 in 1000000
A4	Tailgate Loading	124.6	22.0	3.0	3.0			25	15.8 30.4	90.0	6.4 6			3 810.3		10.1 5.2		16 1.231		5.25	2523	0.77	20	A	Т		1868		9.14	Yes	15.43	7410		5.7E-04	1 in 2045
A5		124.1		3.0	3.0			25	15.5 30.1	90.0	6.4 6	6.2 41.3		6 795.0		10.0 5.17	7 1.32	20 1.222	18.943	5.29	2466	0.77	20							Yes	15.21	7096	2.88	2.1E-11	1 in 1000000
A6		123.6		3.0	3.0		3.0	25	16.7 25.9	90.0	5.8 6		432.	5 724.5	5.6	8.6 5.5	1.21	16 1.182	19.741	5.17	2238	0.78	20							Yes	15.63	6763	3.02	2.6E-12	1 in 1000000
A7		123.1		3.0	3.0			25	16.2 25.5	90.0	6.2 6			1 714.6		8.5 5.40		23 1.175		5.32	2199	0.78	20							Yes	15.29	6316		2.2E-11	1 in 1000000
A8		122.7		3.0	3.0			25	15.7 25.5	90.0	6.4 6			4 713.8					18.403	5.47	2189	0.77	20							Yes	14.99	6003		1.5E-10	1 in 1000000
A9 A10		121.4 123.9		3.0	3.0			25 25	16.0 26.6 16.3 16.4	90.0	6.3 5			6 723.8 3 504.0		8.9 5.3 3 5.5 5.4 3	3 1.24		19.019 16.340	5.16 5.84	2196 1561	0.77	20							Yes	15.27 14.16	6498 3784		6.4E-12 1.4E-08	1 in 1000000 1 in 1000000
A11		124.2		3.0	3.0			25	16.0 16.3	90.0	6.3 6			8 497.3		5.4 5.33	3 1.00		16.115	5.92	1544	0.77	20							Yes	14.03	3659		3.1E-08	1 in 1000000
A12		123.2		3.0	3.0		3.0	25	15.7 16.1	90.0	6.1 6	6.2 48.0	252.	8 486.1	5.2	5.4 5.23	1.01	13 1.009	15.847	5.93	1498	0.76	20							Yes	13.89	3512	2.34	4.4E-08	1 in 1000000
A13		123.0		3.0	3.0			25	16.0 16.0	90.0	6.3 6		256.	0 492.8	5.3	5.3	1.00	00 1.000	16.000	5.92	1515	0.78	20							Yes	13.98	3579		3.5E-08	1 in 1000000
A14		121.9		3.0	3.0			25	16.0 16.1	90.0	6.5 6			6 513.0		5.4 5.3	1.00		16.039	6.07	1563	0.78	20							Yes	14.00	3606		7.7E-08	1 in 1000000
A15 A16		128.8		3.0	3.0			25	23.5 37.0	90.0	5.2 6 6.4 6			5 1237.0		12.3 7.83		23 1.223		4.58	3984	0.87	20							Yes	21.69	18859 8971		5.2E-23	1 in 1000000
A17		128.9 128.8		3.0	3.0			25 25	17.6 30.5 19.0 30.7	90.0	6.3 6			8 883.2 3 951.3		10.2 5.8 10.2 6.3		68 1.255 35 1.235		5.30 5.25	2846 3064	0.80	20							Yes	16.71 17.60	10268		4.0E-13 2.3E-14	1 in 1000000 1 in 1000000
A18		127.3		3.0	3.0			25	18.1 30.7	90.0	6.2 6			7 901.5		10.2 6.03		58 1.258		5.16	2869	0.80	20							Yes	17.09	9495		4.1E-14	1 in 1000000
A19		125.9		3.0	3.0			25	16.0 30.5	90.0	6.2 6			0 821.4		10.2 5.33	3 1.31			5.30	2585	0.77	20							Yes	15.57	7598		8.6E-12	1 in 1000000
A20		125.1		3.0	3.0			25	15.3 30.5	90.0	6.3 6			7 797.0		10.2 5.10			18.699	5.34	2493	0.76	20							Yes	15.10	7048		4.3E-11	1 in 1000000
A21		124.4		3.0	3.0			25	16.2 15.0	90.0	6.3 6			0 472.5		5.0 5.00		62 0.969		6.05	1469	0.78	20			-				Yes	13.86	3368		9.5E-08	1 in 1000000
A22 A23		123.9 123.6		3.0	3.0			25 25	16.2 15.4 16.4 15.4	90.0	6.2 6 5.8 6			5 479.4 6 481.7		5.1 5.13 5.1 5.1 3		75 0.980 69 0.974		5.95 5.89	1485 1489	0.78	20			-				Yes	13.94 14.00	3477 3536		4.7E-08 2.8E-08	1 in 1000000 1 in 1000000
A23		123.0		3.0	3.0			25	16.4 15.4	90.0	6.3 6			6 490.3		5.1 5.13		69 0.974		5.09	1508	0.77	20							Yes	14.00	3536		4.4E-08	1 in 1000000
A25		121.9		3.0	3.0			25	16.4 15.4	90.0	6.3 6			6 492.6		5.1 5.1		69 0.974		5.94	1501	0.78	20							Yes	14.00	3536		3.8E-08	1 in 1000000
A26	Tailgate Loading	129.9	22.0	3.0	3.0		3.0	25	19.5 22.8	90.0	6.4 7	7.2 42.8	444.	6 777.0	6.5	7.6 6.50	1.07	78 1.078	21.021	5.68	2523	0.83	20	Α	T		1610		9.30	Yes	16.79	7466	1.81 1	1.0E-04	1 in 10976
A27	Tailgate Loading	130.2	22.0	3.0	3.0		3.0	25	21.5 39.1	90.0	6.6 7		840.	7 1301.0	7.2	13.0 7.17	1.29	90 1.290	27.744	5.04	4236	0.86	20	Α	Т		2492		8.00	Yes	20.21	16988	2.52	3.3E-09	1 in 1000000
A28		128.8		3.0	3.0			25	22.4 24.8	90.0	6.4 6		555.			8.3 7.4	7 1.05		23.539	5.19	2884	0.87	20							Yes	19.01	10561		2.6E-16	1 in 1000000
A29 A30		128.2 127.3		3.0	3.0			25 25	9.2 24.4 12.5 24.7	90.0	6.5 6 6.5 6			5 482.0		8.1 3.0		52 1.008 28 1.117		6.88	1545 1874	0.61	20							No No	10.64 13.11	2389 4047		2.8E-03 6.4E-07	1 in 329
A31		125.3		3.0	3.0			25	16.4 15.7	90.0	6.4 6			8 589.0 5 499.3		8.2 4.1 5.2 5.2		78 0.982		6.07 6.08	1564	0.70	20 20							Yes	14.06	3620		6.9E-08	1 in 1000000
A32		124.5		3.0	3.0			25	16.8 15.7	90.0	6.4 6		_	8 505.8		5.2 5.2		66 0.971		5.97	1574	0.79	20							Yes	14.19	3744		2.7E-08	1 in 1000000
A33		125.9		3.0	3.0		3.0	25	16.3 15.6	90.0	6.6	6.0 48.6	254.	3 494.6	5.4	5.2 5.2 0	0.97	78 0.982	16.009	6.12	1557	0.78	20							Yes	14.01	3562	2.29	1.0E-07	1 in 1000000
A34		122.8		3.0	3.0			25	16.3 15.1	90.0	6.5			1 485.6		5.0 5.00		62 0.969		6.06	1491	0.79	20							Yes	13.91	3424		8.8E-08	1 in 1000000
A35		121.9		3.0	3.0			25	16.3 15.9	90.0	6.3 6			2 499.5		5.3 5.30		88 0.990		5.87	1521	0.78	20							Yes	14.06	3645		2.1E-08	1 in 1000000
A36 A37		126.5 125.1	***************************************	3.0	3.0			25 25	19.0 15.1 16.8 15.1	90.0	6.4 6			9 548.6 7 496.8		5.0 5.0 3 5.0 3		86 0.886 47 0.954		6.05 6.12	1735 1554	0.82	20		***************************************			***************************************		Yes	14.85 14.07	4262 3569		8.9E-09 8.8E-08	1 in 1000000 1 in 1000000
A38		124.0		3.0	3.0			25	16.6 14.8	90.0	6.1 6			7 485.8		4.9 4.93		43 0.951		6.13	1505	0.78	20		,					Yes	13.94	3425		1.2E-07	1 in 1000000
A39		123.6		3.0	3.0			25	16.6 15.0	90.0	6.3 6			0 490.1		5.0 5.00		49 0.957		6.08	1514	0.79	20	***************************************						Yes	13.98	3482		8.5E-08	1 in 1000000
A40		121.8		3.0	3.0		3.0	25	16.6 15.4	90.0	6.3 6			6 501.5		5.1 5.13		63 0.968		5.97	1527	0.79	20							Yes	14.07	3596	2.36	3.8E-08	1 in 1000000
A41	Double Goaf Loading	130.0	45.0	3.0	3.0			25	27.0 31.6	90.0	6.5 6			2 1283.1		10.5 9.00		78 1.078		4.89	4170	0.92	20	Α	G		4270		9.89	Yes	24.28	20720		9.1E-09	1 in 1000000
A42 A43		127.3 126.8		3.0	3.0			25 25	20.0 22.9 15.3 21.1	90.0	6.3 6			0 762.7 8 606.0		7.6 6.6 7.0 5.1 0		68 1.068 59 1.109		5.30 5.95	2427 1922	0.84	20							Yes	17.10 14.37	7830 4640		1.4E-13 1.6E-08	1 in 1000000 1 in 1000000
A44		125.1		3.0	3.0			25	16.8 15.4	90.0	6.0 6					5.1 5.13		57 0.962		6.06	1569	0.76	20							Yes	14.13	3656		5.4E-08	1 in 1000000
A45		124.3		3.0	3.0			25	16.8 15.4	90.0	6.1 6			7 501.5		5.1 5.13		57 0.962		6.02	1558	0.78	20							Yes	14.13	3656		4.3E-08	1 in 1000000
A46		124.2		3.0	3.0		3.0	25	16.8 15.4	90.0	6.4 6	6.4 48.8	258.	7 505.8	5.6	5.1 5.13		57 0.962		6.07	1570	0.79	20		•					Yes	14.13	3656	2.33	5.6E-08	1 in 1000000
A47		122.0		3.0	3.0			25	16.8 15.7	90.0	6.4			8 510.4		5.2 5.2		66 0.971		5.90	1556	0.79	20							Yes	14.19	3744		1.8E-08	1 in 1000000
A48		128.2		3.0	3.0	~~~~		25	17.9 28.1	90.0	7.0 7			0 874.0		9.4 5.97		22 1.219		5.57	2801	0.81	20							Yes	16.67	8386		3.9E-12	1 in 1000000
A49 A50		126.8 128.2		3.0	3.0			25 25	32.6 43.0 16.8 42.0	90.0	6.5 7 6.1 7			.8 1955.0 .6 1126.7		14.3 10.8 14.0 5.6 0		38 1.138 29 1.362		4.42 5.12	6199 3611	0.97	20			-				Yes	33.16 16.87	46482 11906		2.7E-40 4.9E-14	1 in 1000000 1 in 1000000
A50 A51		125.1	<u> </u>	3.0	3.0			25	12.8 15.6	90.0	7.5 6			7 442.5		5.2 4.2		99 1.040		6.93	1384	0.78	20			-				No	12.80			5.8E-05	1 in 19912
A52		126.7	1	3.0	3.0			25	32.0 12.8	90.0	7.5 7			6 782.1				71 0.571		6.05	2476	0.97	20							Yes	22.65	9277		7.7E-17	1 in 1000000
A53	Tailgate Loading	130.2	22.0	3.0	3.0			25	13.7 38.0	90.0	7.5 7			6 966.7				70 1.223		6.04	3147	0.74	20	Α	Т		2454		10.76	No	14.39	7491		3.0E-02	1 in 31
A54		129.4		3.0	3.0			25	13.7 42.3	90.0	7.5 7			5 1055.8				11 1.240		5.89	3416	0.74	20							No	14.49	8399		8.6E-09	1 in 1000000
A55 A56		127.3 124.8	-	3.0	3.0			25 25	14.8 66.0 12.0 13.5	90.0	7.4 7 7.2 9		_	8 1620.6		4.5 4.0 0		34 1.372 59 1.019		5.28	5158 1396	0.77	20			-				No	15.87	15503 1985		3.3E-12 1.1E-02	1 in 1000000
A56 A57		124.8	-	3.0	3.0			25	12.0 13.5	90.0	7.4 7			0 447.4 8 886.2		4.5 4.00 13.1 3.90		41 1.139		8.62 6.16	2834	0.71	20			ļ				No No	12.26 12.80			1.1E-02 2.1E-06	1 in 76 1 in 781330
A58		125.1		3.0	3.0			25	14.0 32.1	90.0	7.7 7			4 859.3				93 1.202		5.98	2688	0.76	20				L			No	14.42			1.7E-08	1 in 1000000
A59	Double Goaf Loading	130.3	22.0	3.0	3.0			25	14.1 25.9	90.0	7.2 6	6.6 47.2		2 692.3				95 1.158		6.17	2255	0.74	20	Α	G		2059		11.81	No	14.20	5185		1.3E-01	1 in 8
A60	Tailgate Loading	129.8	22.0	3.0	3.0			25	13.6 37.6	90.0	7.2 7			4 927.7				69 1.217		5.89	3010	0.73	20	Α	Т		2391		10.56	No	14.30	7313		2.5E-02	1 in 36
A61		132.3		3.0	3.0			25	13.6 42.6	90.0	7.3 7 7.4 7			4 1042.9		14.2 4.5		16 1.237		5.95	3449	0.73	20			-				No	14.42	8354		1.5E-08	1 in 1000000
A62 A63		127.3 130.0		3.0	3.0			25 25	13.6 25.5 11.2 51.9	90.0	7.4 7			8 684.6 3 1087.8		8.5 4.50 17.3 3.70		04 1.145 45 1.129		6.28 6.08	2179 3535	0.74	20							No No	13.86 12.47	4808 7247		3.2E-07 3.1E-06	1 in 1000000 1 in 495132
A64		127.3		3.0	3.0			25	11.2 49.8	90.0	7.2 7			8 1050.6		16.6 3.7		33 1.127		5.99	3344	0.68	20							No	12.47		·····	2.1E-06	1 in 790125
A65	Double Goaf Loading	125.1	45.0	3.0	3.0			25	19.7 23.5	90.0	89.9 E	6.3 85.8		0 3266.1		7.8 6.5		88 1.088		22.06	10215	1.75	20	A	G		3158		28.89	Yes	17.03	7882		1.0E+00	#NUM!
A66	Maingate Loading	126.1	4 5.0	3.0	3.0		3.0	25	14.8 23.5	90.0	73.2 6	6.5 86.8	347.	8 2640.0	4.9	7.8 4.90	1.22	27 1.141	16.887	23.93	8323	1.15	20	A	M		5812		40.64	No	14.45	5025	4	1.0E+00	#NUM!
A67	Maingate Loading	127.9	45.0	3.0	3.0			25	15.2 23.3	90.0	38.2			2 1602.0		7.8 5.0		10 1.141		14.46	5122	1.00	20	A	М		3467		24.25	Yes	14.53	5146		4.0E+00	#NUM!
A68	Maingate Loading	122.1	22.0	3.0	3.0	~~~~		25	15.0 34.4	90.0	6.3 6			0 862.7	~~~~~~			93 1.247		5.10	2633	0.76	20	Α	M		1196		7.42	Yes	15.22			3.0E-06	1 in 503218
A69 A70		122.1 122.1		3.0	3.0			25 25	16.4 18.4 15.9 18.2	90.0	6.6 7 6.4 7			8 595.7 4 573.1				57 1.047 67 1.051		6.03	1818 1749	0.79	20							Yes Yes	14.53 14.29	4384 4135		1.7E-08 3.4E-08	1 in 1000000 1 in 1000000
A70		121.2		3.0	3.0			25	15.9 18.2	90.0	5.9 7			4 560.3			1.06		16.716	5.87	1698	0.76	20							Yes	14.29	4135		1.2E-08	1 in 1000000
A72		120.6		3.0	3.0			25	15.9 18.2			7.5 48.6		4 562.8		 		67 1.051		5.86	1697	0.77	20							Yes	14.29	4135		1.2E-08	1 in 1000000
A73	Maingate Loading	124.2	22.0	3.0	3.0			25	15.5 30.9			5.7 40.0						32 1.230		5.17	2477	0.76	20	Α	М		1111		7.49	Yes	15.26			3.7E-06	1 in 396322
			•																																

Table A.5: Pillar Stability Analysis

Run 5: Decrease Run 2 Pillars by 1 m and increase working section to 3.0 m

Akalan Projects 18/10/16 Lake Macquarie Private Hospital Northern Expansion O'Brien Street, Gateshead Client: Project: Date: Location: Analysis Assumptions: NSW Pillar formula

Sheet: 16471.21 Calculations by JAW

Project Number

Key to Colour Coding of Factors of Safety / Width: Height Ratios

Greater than 3.0 Between 2.2 and 3.0 2.10 Between 1.8 and 2.2 Between 1.5 and 1.8 1.20 Less than 1.5

Indicating Pillar Located within Project Angle of Draw Indicating Pillar Located beneath site

Analysis	Comment	Depth	Panel Width/Span	Seam	Working	Pillar Heigh	t Unit	Pillar Details		adway D	Deta Extract	. Pillar	Total	w1/	w2/H W	idth/	Width Mo	odifier	Pillar	Pillar	Proportion	Abutment		Abutment	Shed	Abutment	Pillar	Pillar			Power L		Proba	
ld:		_	(Longwall only)	Thickness	Section	Section	Weigth	Width Length	Internal		Ratio	Area	Area	-	Height He	· I -	اماه	WΘ	Stress	Load	Abutment	Angle	Abut (A)	Loading	Load	Load	Stress (MPa)	Stress	0	Strength "			Probability of Fai	
		(m)	(m)	(m)	(m)	(m)	(kN/m³)	w1 w2 (m) (m)	Angle (°)	b1 b	n) (%)	m ³	m ³		Ratio R w2/H	atio C	$\Theta_0 \mid \Theta \mid$	Effective Width	(Tributary) (MPa)	(Tributary MN	r) transfer R	-	Yield (Y)	Type M.T.G	MN	Received MN	("Yield") φ _o = 0.7	("Abut") (MPa)	Squat	(MPa)	Load MN	٥	of Failure NSW P	
A74		122.3	()	3.0	3.0	3.0	25	15.4 16.4	90.0	6.5 6	.2 49.0	252.6	6 494.9		5.5 5	.13 1.0	031 1.022		5.99	1513	0.77	20	(-/-	,.,,,,			Ψ. σ.:	(1111 (2)	Yes	13.84	3494	2.31	7.4E-08 1 in 100	
A75		121.8		3.0	3.0	3.0	25	15.6 15.9	90.0	6.2 6		248.0	486.1	5.2	5.3 5	.20 1.0	010 1.007	15.709	5.97	1480	0.77	20							Yes	13.83	3430	2.32	6.6E-08 1 in 100	00000
A76		121.8		3.0	3.0	3.0	25	15.6 16.1	90.0	5.8 6			2 487.9		5.4 5			15.780	5.92	1486	0.76	20							Yes	13.86	3481		4.6E-08 1 in 100	
A77 A78	Maingate Loading	121.2 121.8	22.0	3.0	3.0	3.0	25 25	15.6 16.0 15.5 28.9	90.0	6.0 6		448.0	6 475.2 0 747.7		5.3 5 9.6 5		013 1.009 302 1.210	15.745 18.752	5.77 5.08	1440 2277	0.76	20	Α	М		1025		7.37	Yes Yes	13.84 15.13	3455 6778		2.0E-08 1 in 100 3.0E-06 1 in 51	
A79	gate zodang	121.9		3.0	3.0	3.0	25	15.2 16.6	90.0	7.6 6			3 522.1		5.5 5			15.658	6.31	1591	0.79	20				1020			Yes	13.79	3480		4.3E-07 1 in 100	
A80	Tailgate Loading / Double Goaf	125.6	45.0	3.0	3.0	3.0	25	17.5 30.5	90.0	24.2 6		533.8	8 1522.1	5.8	10.2 5	.83 1.2	271 1.254	21.945	8.95	4779	0.98	20	Α	G		3888		16.24	Yes	16.64	8880	1.02	4.5E-01 1 in	2
A81		121.8		3.0	3.0	3.0	25	14.4 16.5	90.0	6.2 6			465.6		5.5 4	_		14.979	5.97	1418	0.74	20							No	13.59	3229		1.2E-07 1 in 100	-
B1 B2		121.2 120.6		3.0	3.0	3.0	25 25	16.2 14.9 15.8 14.9	90.0	6.4 7		+	4 510.8 4 501.7		5.0 4 5.0 4			15.656 15.449	6.41	1548 1513	0.78	20							Yes	13.84	3341 3230		6.4E-07 1 in 100 9.0E-07 1 in 100	
B3		120.1		3.0	3.0	3.0	25	15.0 14.4	90.0	6.4 7			0 472.9		4.8 4			14.795	6.57	1420	0.76	20							Yes	13.50	2917		2.9E-06 1 in 53	
B4		120.2		3.0	3.0	3.0	25	16.3 14.7	90.0	6.4 6	.0 49.0	239.6	6 469.9	5.4	4.9 4	.90 0.9	948 0.958	15.614	5.89	1412	0.79	20							Yes	13.83	3314		4.3E-08 1 in 100	00000
B5		119.6		3.0	3.0	3.0	25	15.9 14.8	90.0	6.4 6			3 463.8		4.9 4			15.461	5.89	1387	0.78	20							Yes	13.73	3231	·····	5.5E-08 1 in 100	
B6 B7		119.2 118.6	***************************************	3.0	3.0	3.0	25 25	16.3 15.1 17.3 23.6	90.0	6.4 6			1 479.0 3 706.3		5.0 5 7.9 5			15.793 19.744	5.80 5.13	1427 2094	0.79	20					***************************************	***************************************	Yes Yes	13.91 15.73	3424 6421		2.0E-08 1 in 100 1.4E-12 1 in 100	
B8		119.0		3.0	3.0	3.0	25	17.1 23.9	90.0	6.4 6			7 707.4		8.0 5	.70 1.		19.633	5.15	2104	0.80	20							Yes	15.65	6396		2.0E-12 1 in 100	
В9		120.0		3.0	3.0	3.0	25	17.0 23.9	90.0	6.4 6	.2 42.3	406.3	3 704.3	5.7	8.0 5	.67 1.	169 1.149	19.527	5.20	2113	0.80	20							Yes	15.59	6334	3.00	3.7E-12 1 in 100	00000
B10		121.3		3.0	3.0	3.0	25	17.8 23.7	90.0	6.4 6			9 723.6		7.9 5			20.271	5.20	2194	0.81	20							Yes	16.04	6765		1.1E-12 1 in 100	
B11 B12	Maingate Loading	121.8 121.0	22.0	3.0	3.0	3.0	25 25	14.2 39.0 17.6 18.0	90.0	7.1 5 6.4 6			8 954.2 8 580.8		13.0 4 6.0 5	.73 1.4		17.714	5.25 5.55	2906 1757	0.76	20	A	М		1362		7.71	No Yes	14.80 14.97	8198 4741		2.0E-05 1 in 61 2.7E-10 1 in 100	
B13		119.7		3.0	3.0	3.0	25	15.8 17.7	90.0	6.4 6			7 530.6		5.9 5	.27 1.0		16.472	5.68	1588	0.78	20							Yes	14.18	3964		5.0E-09 1 in 100	
B14		118.4		3.0	3.0	3.0	25	16.2 17.7	90.0	6.4 6		286.7	7 540.1	5.4	5.9 5	.40 1.0	044 1.035	16.771	5.58	1599	0.79	20							Yes	14.34	4111	2.57	1.7E-09 1 in 100	00000
B15		117.7		3.0	3.0	3.0	25	16.3 18.5	90.0		.2 46.2	301.6			6.2 5		063 1.051		5.47	1650	0.79	20							Yes	14.50	4373		5.5E-10 1 in 100	
B16 B17		119.0 119.7		3.0	3.0	3.0	25 25	62.4 41.3 15.1 30.1	90.0	6.4 6	.2 21.1 .7 42.8	454.5	1 3268.0 5 794.9		13.8 13		797 0.797 332 1.214	49.703 18.337	3.77 5.23	9722 2379	1.01 0.77	20							Yes	96.12 14.95	247720 6795		1.1E-152	
B18	Tailgate Loading	119.9	22.0	3.0	3.0	3.0	25	15.7 30.1	90.0	6.6 6			6 820.6		10.0 5			19.244	5.21	2460	0.78	20	Α	Т		1803		9.02	Yes	15.34	7249		4.7E-04 1 in 2	
B19	Maingate Loading	120.0	45.0	3.0	3.0	3.0	25	16.5 30.3	90.0	6.6 6		500.0			10.1 5			20.465	5.13	2564	0.80	20	Α	М		1767		8.66	Yes	15.90	7949		6.8E-05 1 in 16	
B20	Maingate Loading	119.5	45.0	3.0	3.0	3.0	25	16.5 30.4	90.0	6.6 5		501.6			10.1 5		296 1.241		4.99	2505	0.80	20	Α	M		1726		8.44	Yes	15.91	7979		3.3E-05 1 in 36	
B21 B22		119.3 119.2		3.0	3.0	3.0	25 25	15.8 30.1 15.0 29.9	90.0	6.8 5 6.5 1		448.5	6 813.6 5 683.7		10.0 5		312 1.227 332 1.211		5.10 4.54	2427 2037	0.79	20							Yes	15.41 14.99	7327 6724		2.7E-12 1 in 100 4.7E-14 1 in 100	
B23		119.1		3.0	3.0	3.0	25	12.2 14.0	90.0	6.7 6			389.3		4.7 4			12.492	6.79	1159	0.71	20							No	12.39	2116		7.8E-05 1 in 14	
B24		118.2		3.0	3.0	3.0	25	11.9 9.3	90.0	6.7 6			7 292.0		3.1 3			11.409	7.80	863	0.70	20							No	11.83	1309	***************************************	3.9E-03 1 in 2	
B25		117.5		3.0	3.0	3.0	25	12.8 9.1	90.0	7.1 6 7.6 6			5 308.5		3.0 3			11.838	7.78	906	0.74	20							No	12.05	1404		2.7E-03 1 in 3	
B26 B27		116.8 116.0		3.0	3.0	3.0	25 25	12.6 8.9 13.0 8.6	90.0	7.0 6			1 309.1 3 301.5		3.0 2 2.9 2			11.683	8.05 7.82	902 874	0.74	20							No No	11.97 12.01	1343 1342	***************************************	5.5E-03 1 in 1 3.2E-03 1 in 2	
B28		115.2		3.0	3.0	3.0	25	12.8 9.0	90.0	6.6 6			2 298.8		3.0 3			11.806	7.47	860	0.73	20							No	12.04	1387		1.3E-03 1 in 7	
B29		114.5		3.0	3.0	3.0	25	12.6 12.4	90.0	6.6 6			2 359.0		4.1 4		992 0.997		6.58	1028	0.73	20							No	12.42	1941	***************************************	3.2E-05 1 in 37	
B30		115.3		3.0	3.0	3.0	25	12.9 12.6 11.8 13.0	90.0	7.1 6 7.6 6	.3 57.0	162.5	5 378.0 4 374.4		4.2 4 4.3 3			12.834	6.70	1090 1086	0.74	20					***************************************		No	12.56	2041 1860		3.9E-05 1 in 29 3.9E-04 1 in 2	
B31 B32		116.0 116.7		3.0	3.0	3.0	25 25	11.8 13.0 13.0 13.1	90.0 90.0	7.0 6			3 389.9		4.4 4			13.022	7.08 6.68	1138	0.73	20		······································					No No	12.12 12.65	2155		3.9E-04 1 in 2 2.9E-05 1 in 40	
B33		117.4	***************************************	3.0	3.0	3.0	25	11.9 13.0	90.0	6.7 6	.3 56.9	154.7	7 359.0	4.0	4.3 3	.97 1.0		12.067	6.81	1054	0.71	20							No	12.17	1883		1.4E-04 1 in 8	~~~~~
B34		118.3		3.0	3.0	3.0	25	14.6 29.9	90.0	6.5 6			5 757.5		10.0 4			17.547	5.13	2240	0.76	20							No	14.73	6431		2.3E-11 1 in 100	
B35 B36	Maingate Loading	118.0 118.1	45.0	3.0 3.0	3.0	3.0	25 25	15.9 29.2 16.3 28.9	90.0 90.0	6.8 6		464.3			9.7 5 9.6 5			19.384 19.898	5.08 5.01	2357 2360	0.79	20	Δ	М		1632		8.47	Yes Yes	15.41 15.65	7154 7373		2.1E-12 1 in 100 5.7E-05 1 in 20	
B37	Maingate Loading Maingate Loading	117.3	45.0	3.0	3.0	3.0	25	16.3 29.6	90.0	6.7 5		482.5			9.9 5			20.037	4.91	2367	0.80	20	A	M		1638		8.30	Yes	15.71	7578		3.0E-05 1 in 39	
B38		117.2		3.0	3.0	3.0	25	16.0 29.6	90.0	6.8 5	.5 40.8	473.6	6 800.3	5.3	9.9 5	.33 1.2	298 1.225	19.601	4.95	2345	0.80	20							Yes	15.50	7343	3.13	5.4E-13 1 in 100	00000
B39		115.9		3.0	3.0	3.0	25 25	11.8 10.2	90.0	6.7 5	.9 59.6		4 297.9		3.4 3	.40 0.9		11.526	7.17	863	0.71	20							No	11.89	1431		8.7E-04 1 in 1	
B40 B41	Double Goaf Loading	113.8 121.0	45.0	3.0 3.0	3.0	3.0	25	12.2 10.6 16.0 36.8	90.0	6.4 6	.9 59.4		3 318.5 8 958.7		3.5 3 12.3 5	.53 0.9		11.888	7.01 4.93	906 2900	0.73	20	A	G		4338		12.29	Yes	12.08 15.95	1562 9390		3.4E-04 1 in 3 4.8E-02 1 in 3	
B42	Double Goaf Loading	122.0	45.0	3.0	3.0	3.0	25	17.1 29.0	90.0	6.3 5			9 814.3		9.7 5			21.026	5.01	2484	0.80	20	A	G		3566		12.20	Yes	16.21	8037		3.3E-02 1 in	
B43	Double Goaf Loading	123.0	45.0	3.0	3.0	3.0	25	16.9 34.2	90.0		.6 38.7		943.3	5.6	11.4 5			21.830	5.02	2901	0.80	20	Α	G		4123		12.15	Yes	16.49	9529	*************	2.4E-02 1 in	
B44 B45	Maingate Loading Tailgate Loading	124.0 125.0	22.0 4 5.0	3.0 3.0	3.0 3.0	3.0 3.0	25 25	17.3 30.3 16.1 15.6	90.0 90.0	6.8 5 6.0 12	.6 39.4 2.5 59.6		2 865.2 2 621.0		10.1 5 5.2 5		273 1.249 984 0.988	21.615	5.12 7.73	2682 1941	0.81 0.77	20 20	A A	M Ŧ		1173 2528		7.35 17.79	Yes Yes	16.47 13.94	8634 3502	·····	2.0E-07 1 in 100 4.0E+00 #NU	
B46	Tailgate Loading	128.0	22.0	3.0	3.0	3.0	25	20.6 14.8	90.0		.4 54.5		9 669.9		4.9 4		836 0.836		7.03	2144	0.91	20	A	T T		1119		10.70	Yes	15.52	4731		8.4E-03 1 in 1	
B47	Tailgate Loading	127.7	45.0	3.0	3.0	3.0	25	19.6 14.8	90.0	9.9 6	.5 53.8	290.1	1 628.4	6.5	4.9 4	.93 0.8	860 0.860	16.865	6.92	2006	0.88	20	Α	T		1971	***************************************	13.71	Yes	15.04	4362	<u> </u>	3.1E-01 1 in	
B48	Maingate Loading	126.0	45.0	3.0	3.0	3.0	25 05	8.2 11.3	90.0	12.0 7			369.7				159 1.000		12.57	1164	0.73	20	A	M		962		22.95	No	9.99	926		4.0E+00 #NU	
B49 B50	Rotated Panel / Double Goaf Maingate Loading / Double Goaf	125.0 123.0	22.0 45.0	3.0 3.0	3.0 3.0	3.0 3.0	25 25	12.0 7.2 23.8 14.2	90.0 90.0	6.0 7 6.0 6			257.4 0 628.8		2.4 2 4.7 4		750 0.909 747 0.747		9.31 5.72	804 1933	0.89	20 20	A	M G		383 2186		13.75 12.19	No Yes	11.56 17.13	999 5788		4.0E+00 #NU 1.4E-02 1 in	
B51	Rotated Panel / Double Goaf	123.5	45.0	3.0	3.0	3.0	25	14.0 25.8	90.0	6.7 6			2 668.6		8.6 4			16.172	5.72	2064	0.74	20	A	G		3365		15.03	No	14.13	5104	******	6.3E-01 1 in	
B52	Rotated Panel / Double Goaf	124.0	45.0	3.0	3.0	3.0	25	14.0 25.8	90.0	6.7 6			2 668.6		8.6 4			16.172	5.74	2073	0.74	20	Α	G		3383		15.10	No	14.13	5104		6.4E-01 1 in	1
B53	Rotated Panel / Double Goaf	124.6	45.0	3.0	3.0	3.0	25	14.0 25.8	90.0	6.7 7			2 679.0		8.6 4			16.172	5.86	2115	0.74	20	A	G		3457		15.43	No	14.13	5104		6.9E-01 1 in	
B54 B55	Rotated Panel / Double Goaf Rotated Panel / Maingate Load	124.8 125.0	45.0 45.0	3.0	3.0	3.0	25 25	14.0 25.8 14.0 25.8	90.0	6.7 6 6.7 6			2 674.8 2 674.8		8.6 4 8.6 4			16.172 16.172	5.83 5.84	2105 2109	0.74	20	A	G M		3443 1527		15.36 10.07	No No	14.13 14.13	5104 5104		6.8E-01 1 in 1.4E-02 1 in	
B56	Double Goaf Loading	123.0	45.0	3.0	3.0	3.0	25	23.2 14.4	90.0	6.0 6		~~~~	1 607.4		4.8 4		766 0.766		5.59	1868	0.88	20	A	G		2155		12.04	Yes	16.83	5623		1.5E-02 1 in	
B57	Double Goaf Loading	122.0	45.0	3.0	3.0	3.0	25	24.5 21.0	90.0	6.0 6	.2 38.0	514.5	5 829.6	8.2	7.0 7	.00 0.9	923 0.923	22.615	4.92	2530	0.90	20	Α	G		2787		10.34	Yes	19.76	10164	1.91 2	2.3E-05 1 in 53	
B58	Tailgate Loading	121.0	45.0	3.0	3.0	3.0	25	23.5 15.6	90.0	6.3 6			6 667.5		5.2 5		798 0.798		5.51	2019	0.89	20	A	T		1930		10.77	Yes	17.44	6395		1.2E-03 1 in 8	
B59 B60	Rotated Panel / Double Goaf Rotated Panel / Double Goaf	121.5 122.0	45.0 45.0	3.0	3.0	3.0	25 25	15.8 25.6 15.8 25.6	90.0	6.8 6			5 723.2 5 723.2		8.5 5 8.5 5			18.551 18.551	5.43 5.45	2197 2206	0.78	20	A A	G		3261 3279		13.49 13.56	Yes	15.06 15.06	6092 6092		2.7E-01 1 in 2.8E-01 1 in	
B61	Rotated Panel / Double Goaf	123.0	45.0	3.0	3.0	3.0	25	15.8 25.6	90.0	6.8 7		+	5 741.3		8.5 5			18.551	5.64	2279	0.78	20	A	G		3398		14.04	Yes	15.06	6092		3.5E-01 1 in	
B62	Rotated Panel / Double Goaf	123.5	45.0	3.0	3.0	3.0	25	15.8 25.6	90.0	6.8 7			5 736.8	5.3	8.5 5			18.551	5.62	2275	0.78	20	Α	G		3396		14.02	Yes	15.06	6092		3.5E-01 1 in	3
B63	Rotated Panel / Double Goaf	124.0	45.0	3.0	3.0	3.0	25	15.8 25.6	90.0	6.8 7			743.5		8.5 5			18.551	5.70	2305	0.78	20	A	G		3446		14.22	Yes	15.06	6092		3.8E-01 1 in	
B64 B65	Rotated Panel / Double Goaf Double Goaf Loading	125.5 120.0	45.0 45.0	3.0	3.0	3.0	25 25	15.8 25.0 18.8 14.5	90.0 90.0		.1 45.6 .1 53.8		725.5		8.3 5 4.8 4		225 1.166 871 0.871		5.76 6.49	2276 1769	0.78 0.86	20	A A	G G		3416 2165		14.41 14.43	Yes Yes	15.01 14.60	5929 3980		4.1E-01 1 in 4.8E-01 1 in	
_ D00	Dodbie Odai Edadiliy	120.0	70.0	J	0.0	J.0		10.0 14.0	30.0	10.0 /	1 33.0	12,2.0	. 505.1	0.0	+.∪ 4	0.0	Ju.0/ I	10.012	L 0.78	1,09	0.00	20		<u> </u>	L	2100	l	17.73	100	1-7.00	0000	1.01	1 1111	

Table A.5: Pillar Stability Analysis

Run 5: Decrease Run 2 Pillars by 1 m and increase working section to 3.0 m

Client: Date: Akalan Projects 18/10/16 Lake Macquarie Private Hospital Northern Expansion O'Brien Street, Gateshead Project: Location: Analysis Assumptions: NSW Pillar formula Sheet:

Project Number 16471.21 Calculations by JAW

Key to Colour Coding of Factors of Safety / Width: Height Ratios

4.50	Greater than 3.0
2.40	Between 2.2 and 3.0
2.10	Between 1.8 and 2.2
1.70	Between 1.5 and 1.8
1.20	Less than 1.5

Indicating Pillar Located within Project Angle of Draw Indicating Pillar Located beneath site

Analysis	Comment	Depth	Panel Width/Span	Seam	Working	Pillar Heigh	nt Unit	Pillar Details		adway De	ta Extract.	Pillar	Total w1/	w2/H \	/idth/	Width M	odifier	Pillar	Pillar	Proportion	Abutment		Abutment	Shed	Abutment	Pillar	Pillar			Power L			Probability
ld:			(Longwall only)	Thickness	Section	Section	Weigth	Width Length	Internal		Ratio	Area	Area Heigh	nt Height H	eight		wΘ	Stress	Load	Abutment	Angle	Abut (A)	Loading	Load	Load	Stress (MPa)	Stress		Strength	"Ultimate"	FoS F	Probability	of Failure
		D			Н	Н	γ	w1 w2	Angle	b1 b2			Ratio	o Ratio	atio 🛭 🛭 🛛	_ Θ	Effective	(Tributary)	(Tributary)	transfer	۰	Yield (Y)	Type		Received	("Yield")	("Abut")	Squat		Load	r	of Failure	NSW Power
		(m)	(m)	(m)	(m)	(m)	(kN/m ³	(m) (m)	(°)	(m) (m)	(%)	m ³	m ³ w1/F	H w2/H			Width	(MPa)	MN	R		(?)	M,T,G	MN	MN	$\phi_g = 0.7$	(MPa)		(MPa)	MN			Formulae
B66	Double Goaf Loading	119.5	45.0	3.0	3.0	3.0	25	23.7 15.2	90.0	6.5 6.0	43.7	360.2	640.2 7.9	5.1	0.7	81 0.781	18.521	5.31	1913	0.90	20	Α	G		2113		11.17	Yes	17.43	6280	1.56	2.4E-03	1 in 388
B67	Tailgate Loading	119.0	45.0	3.0	3.0	3.0	25	23.7 15.2	90.0	6.5 6.2	44.3	360.2	646.3 7.9	5.1	0.7	81 0.781	18.521	5.34	1923	0.90	20	Α	Т		1803		10.34	Yes	17.43	6280	1.69	5.8E-04	1 in 1999
B68	Rotated Panel / Double Goaf	120.0	45.0	3.0	3.0	3.0	25	15.0 26.0	90.0	6.2 6.8	43.9	390.0	695.4 5.0	8.7	1.2	68 1.172	17.575	5.35	2086	0.76	20	Α	G		3287		13.78	Yes	14.74	5750	1.07	3.6E-01	1 in 3
B69	Rotated Panel / Double Goaf	120.0	45.0	3.0	3.0	3.0	25	15.0 26.0	90.0	6.2 6.8	43.9	390.0	695.4 5.0	8.7	1.2	68 1.172	17.575	5.35	2086	0.76	20	Α	G		3287		13.78	Yes	14.74	5750	1.07	3.6E-01	1 in 3
B70	Rotated Panel / Double Goaf	120.0	45.0	3.0	3.0	3.0	25	15.0 26.0	90.0	6.2 6.6	43.6	390.0	691.1 5.0	8.7	5.00 1.2	68 1.172	17.575	5.32	2073	0.76	20	Α	G		3267		13.69	Yes	14.74	5750	1.08	3.5E-01	1 in 3
B71	Rotated Panel / Double Goaf	120.0	45.0	3.0	3.0	3.0	25	15.0 26.0	90.0	6.2 6.7	43.7	390.0	693.2 5.0	8.7	1.2	68 1.172	17.575	5.33	2080	0.76	20	Α	G		3277		13.74	Yes	14.74	5750	1.07	3.5E-01	1 in 3
B72	Rotated Panel / Double Goaf	120.0	45.0	3.0	3.0	3.0	25	15.0 26.0	90.0	6.2 6.7	43.7	390.0	693.2 5.0	8.7	1.2	68 1.172	17.575	5.33	2080	0.76	20	Α	G		3277		13.74	Yes	14.74	5750	1.07	3.5E-01	1 in 3
B73	Rotated Panel / Double Goaf	120.0	45.0	3.0	3.0	3.0	25	15.0 26.0	90.0	6.2 6.9	44.1	390.0	697.5 5.0	8.7	1.2	68 1.172	17.575	5.37	2092	0.76	20	Α	G		3297		13.82	Yes	14.74	5750	1.07	3.6E-01	1 in 3
B74	Double Goaf Loading	118.2	45.0	3.0	3.0	3.0	25	24.3 14.5	90.0	6.5 6.3	45.0	352.4	640.6 8.1	4.8	.83 0.7	47 0.747	18.162	5.37	1893	0.91	20	Α	G		2043		11.17	Yes	17.56	6188	1.57	2.1E-03	1 in 452
B75	Double Goaf Loading	118.0	45.0	3.0	3.0	3.0	25	24.1 14.5	90.0	6.5 6.8	46.4	349.5	651.8 8.0	4.8	.83 0.7	51 0.751	18.106	5.50	1923	0.91	20	Α	G		2087		11.47	Yes	17.43	6091	1.52	3.8E-03	1 in 235
B76	Maingate Loading	117.0	45.0	3.0	3.0	3.0	25	25.4 14.6	90.0	6.5 6.3	44.4	370.8	666.7 8.5	4.9	. 87 0.7	30 0.730	18.542	5.26	1950	0.92	20	Α	M		1118		8.27	Yes	18.34	6803	2.22	2.8E-07	1 in 1000000
B77	Rotated panel / Maingate Loading	118.0	45.0	3.0	3.0	3.0	25	14.4 26.7	90.0	6.7 6.3	44.8	384.5	696.3 4.8	8.9	1.2	99 1.170	16.849	5.34	2054	0.76	20	Α	M		1477		9.18	No	14.43	5548	1.57	2.1E-03	1 in 447
B78	Rotated panel / Maingate Loading	119.0	45.0	3.0	3.0	3.0	25	14.3 26.3	90.0	6.6 6.3	44.8	376.1	681.3 4.8	8.8	1.2	96 1.165	16.656	5.39	2027	0.75	20	Α	M		1459		9.27	No	14.35	5395	1.55	2.8E-03	1 in 332
B79	Rotated panel / Maingate Loading	120.0	45.0	3.0	3.0	3.0	25	14.5 26.3	90.0	6.4 6.3	44.0	381.4	681.3 4.8	8.8	1.83 1.2	89 1.168	16.935	5.36	2044	0.75	20	Α	M		1464		9.20	No	14.47	5517	1.57	2.1E-03	1 in 454
B80	Rotated panel / Maingate Loading	121.0	45.0	3.0	3.0	3.0	25	14.5 26.3	90.0	6.7 6.3	44.8	381.4	691.1 4.8	8.8	1.83	89 1.168	16.935	5.48	2091	0.76	20	Α	M		1500		9.42	No	14.47	5517	1.54	3.1E-03	1 in 290
B81	Rotated panel / Maingate Loading	122.0	45.0	3.0	3.0	3.0	25	14.5 26.3	90.0	6.6 6.3	44.6	381.4	687.9 4.8	8.8	1.83	89 1.168	16.935	5.50	2098	0.75	20	Α	M		1504		9.45	No	14.47	5517	1.53	3.3E-03	1 in 273
B82	Rotated panel / Maingate Loading	123.0	45.0	3.0	3.0	3.0	25	14.5 26.3	90.0	6.6 6.3	44.6	381.4	687.9 4.8	8.8	1.83	89 1.168	16.935	5.55	2115	0.75	20	Α	M		1517		9.52	No	14.47	5517	1.52	3.8E-03	1 in 235
B83		113.0		3.0	3.0	3.0	25	12.6 8.9	90.0	6.4 7.2	63.3	112.1	305.9 4.2	3.0	0.8	28 0.927	11.683	7.71	864	0.72	21	Α	M		105		8.64	No	11.97	1343	1.38	1.8E-02	1 in 50
B84		113.5		3.0	3.0	3.0	25	13.0 8.6	90.0	6.6 7.2	63.9	111.8	309.7 4.3	2.9	2.87 0.7	96 0.904	11.748	7.86	879	0.74	22	Α	M		109		8.83	No	12.01	1342	1.36	2.4E-02	1 in 38
B85		113.8		3.0	3.0	3.0	25	12.8 9.0	90.0	6.4 6.3	60.8	115.2	293.8 4.3	3.0	8.00 0.8	26 0.922	11.806	7.25	836	0.73	23	Α	М		101		8.13	No	12.04	1387	1.48	6.0E-03	1 in 147

Table A.5 Run 5 Page 3 16471.21 Pillar Stability Analysis

Table A.6: Pillar Stability Analysis

Project:

Location:

Run 2A: Additional Abutment load to western pillars beneath site

Lake Macquarie Private Hospital Northern Expansion O'Brien Street, Gateshead Client: Akalan Projects Date: 18/10/16

Analysis Assumptions: NSW Pillar formula Sheet:

Project Number 16471.21 Calculations by JAW

Key to Colour Coding of Factors of Safety / Width: Height Ratios

Greater than 3.0 Between 2.2 and 3.0 2.10 Between 1.8 and 2.2 Between 1.5 and 1.8 Less than 1.5

Indicating Pillar Located within Project Angle of Draw Indicating Pillar Located beneath site

Analysis	Comment	Depth	Panel Width/Span	Seam	Working	Pillar Heigh	Unit	Pillar D	lotaile		adway De	ta Extract	Pillar	r Total	l w1/	w2/l	Width/	۱۸/	Vidth Mod	ifier	Pillar	Pillar	Proportion	Abutment		Abutment	Shed	Abutment	Pillar	Pillar		\top	Power	rlaw		Probability
Id:	Comment	Бери	(Longwall only)	1	Section	٠, ٠	Weigth			Internal	adway De	Ratio				nt Heig		<u>**</u>	VIGET IVICE	wΘ	Stress	Load	Abutment		Abut (A)	Loading	Load	Load	Stress (MPa)	Stress		Strength			Probability	of Failure
		D	(==::g::=::=:,)		н	Н	v	w1	w2	Angle	b1 b2	1			Ratio	-	-	Θο	Θ	ffective		(Tributary)) transfer		Yield (Y)	Type		Received	("Yield")	("Abut")	Squat	- and and	Load		of Failure	NSW Power
		(m)	(m)	(m)	(m)	(m)	(kN/m³)	(m)	(m)	(°)	(m) (m)	(%)	m ³	m ³	w1/F		rtado	"	ا ۲ ا	Width	(MPa)	MN	R		(2)	M.T.G	MN	MN	φ ₀ = 0.7	(MPa)	Oquat	(MPa)	MN		or r andre	Formulae
A6		123.6	(,	2.4	2.4	2.4	25	17.7	26.9	90.0	4.8 5.3	34.3	476.1	1 724.5			7.38	1.206	1.206		4.70	2238	0.78	20	(./	,.,0			Ψχ σ	(4)	Yes	21.66	10314	4.61	3.2E-22	1 in 1000000
A7		123.1	***************************************	2.4	2.4	2.4	25	17.2	26.5	90.0	5.2 5.4			8 714.6				1.213			4.82	2199	0.78	20				-			Yes	21.08	9606	4.37	1.0E-20	1 in 1000000
A8		122.7		2.4	2.4	2.4	25	16.7	26.5	90.0	5.4 5.8	38.0		6 713.8				1.227			4.95	2189	0.77	20	 	 					Yes	20.58	9106	4.16	2.0E-19	1 in 1000000
A9		121.4		2.4	2.4	2.4	25	17.0	27.6	90.0	5.0 5.3			2 723.8				1.238			4.68	2196	0.77	20							Yes	21.04	9872	4.50	1.6E-21	1 in 1000000
A68	Maingate Loading	122.1	90.0	2.4	2.4	2.4	25	16.0	35.4	90.0	5.3 5.1		566.4	4 862.7	7 6.7	14.8	6.67	1.377	1.377	22.039	4.65	2633	0.76	20	A	М		2079		8.32	Yes	20.96	11869	2.52	3.6E-09	1 in 1000000
A69		122.1		2.4	2.4	2.4	25	17.4	19.4	90.0	5.6 6.5	43.3	337.6	6 595.7	7 7.3	8.1	7.25	1.054	1.054	18.346	5.39	1818	0.79	20							Yes	19.86	6704	3.69	1.8E-16	1 in 1000000
A70		122.1		2.4	2.4	2.4	25	16.9	19.2	90.0	5.4 6.5	43.4	324.5	5 573.1	7.0	8.0	7.04	1.064	1.064	17.977	5.39	1749	0.78	20							Yes	19.36	6282	3.59	7.2E-16	1 in 1000000
A71		121.2		2.4	2.4	2.4	25	16.9	19.2	90.0	4.9 6.5	42.1	324.5	5 560.3	3 7.0	8.0	7.04	1.064	1.064	17.977	5.23	1698	0.77	20					***************************************		Yes	19.36	6282	3.70	1.5E-16	1 in 1000000
A72		120.6		2.4	2.4	2.4	25	16.9	19.2	90.0	5.0 6.5	42.3	324.5	5 562.8	3 7.0	8.0	7.04	1.064	1.064	17.977	5.23	1697	0.77	20	<u> </u>						Yes	19.36	6282	3.70	1.5E-16	1 in 1000000
A73	Maingate Loading	124.2	90.0	2.4	2.4	2.4	25	16.5	31.9	90.0	5.3 4.7	34.0	526.4	4 797.9	6.9	13.3	6.88	1.318	1.318	21.750	4.71	2477	0.76	20	Α	М		2190		8.87	Yes	21.09	11103	2.38	2.7E-08	1 in 1000000
A74		122.3		2.4	2.4	2.4	25	16.4	17.4	90.0	5.5 5.2	42.3	285.4	4 494.9	6.8	7.3	6.83	1.030	1.030	16.885	5.30	1513	0.77	20							Yes	18.49	5276	3.49	3.2E-15	1 in 1000000
A75		121.8		2.4	2.4	2.4	25	16.6	16.9	90.0	5.2 5.4	42.3	280.5	5 486.1	6.9	7.0	6.92	1.009	1.009	16.749	5.28	1480	0.77	20							Yes	18.51	5194	3.51	2.4E-15	1 in 1000000
A76		121.8		2.4	2.4	2.4	25	16.6	17.1	90.0	4.8 5.7	41.8	283.9	9 487.9	6.9	7.1	6.92	1.015	1.015	16.846	5.23	1486	0.76	20							Yes	18.57	5271	3.55	1.3E-15	1 in 1000000
A77		121.2		2.4	2.4	2.4	25	16.6	17.0	90.0	5.0 5.0	40.6	282.2	2 475.2	6.9	7.1	6.92	1.012	1.012	16.798	5.10	1440	0.76	20							Yes	18.54	5233	3.63	3.9E-16	1 in 1000000
A78	Maingate Loading	121.8	90.0	2.4	2.4	2.4	25	16.5	29.9	90.0	5.3 4.4	34.0	493.4	4 747.7	6.9	12.5	6.88	1.289	1.289	21.265	4.62	2277	0.77	20	Α	M		1777		8.22	Yes	20.85	10288	2.54	2.7E-09	1 in 1000000
A79		121.9		2.4	2.4	2.4	25	16.2	17.6	90.0	6.6 5.3	45.4	285.1	1 522.1	6.8	7.3	6.75	1.041	1.041	16.871	5.58	1591	0.79	20							Yes	18.38	5241	3.29	5.2E-14	1 in 1000000
A81		121.8		2.4	2.4	2.4	25	15.4	17.5	90.0	5.2 5.1	42.1	269.5	5 465.6	6.4	7.3	6.42	1.064	1.064	16.383	5.26	1418	0.74	20							Yes	17.75	4785	3.38	1.6E-14	1 in 1000000
B1		121.2		2.4	2.4	2.4	25	17.2	15.9	90.0	5.4 6.7	46.5	273.5	5 510.8	7.2	6.6	6.63	0.961	0.961	16.524	5.66	1548	0.78	20							Yes	18.71	5118	3.31	4.3E-14	1 in 1000000
B2		120.6		2.4	2.4	2.4	25	16.8	15.9	90.0	5.4 6.7	46.8	267.1	1 501.7	7.0	6.6	6.63	0.972	0.972	16.338	5.66	1513	0.78	20							Yes	18.39	4911	3.25	1.0E-13	1 in 1000000
B3		120.1	***************************************	2.4	2.4	2.4	25	16.0	15.4	90.0	5.4 6.7	47.9	246.4				6.42	0.981		15.694	5.76	1420	0.76	20							Yes	17.62	4342	3.06	1.5E-12	1 in 1000000
B4		120.2		2.4	2.4	2.4	25	17.3	15.7	90.0	5.4 5.0		271.6				6.54		0.952		5.20	1412	0.79	20		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			~		Yes	18.73	5088	3.60	6.0E-16	1 in 1000000
B5		119.6		2.4	2.4	2.4	25	16.9	15.8	90.0	5.4 5.0		-	463.8			6.58		0.966		5.19	1387	0.78	20							Yes	18.44	4923	3.55	1.3E-15	1 in 1000000
B6		119.2		2.4	2.4	2.4	25	17.3	16.1	90.0	5.4 5.0	41.8	-	5 479.0			6.71	0.964			5.12	1427	0.79	20							Yes	18.86	5253	3.68	2.0E-16	1 in 1000000
B7		118.6		2.4	2.4	2.4	25	18.3	24.6	90.0	5.4 5.2			2 706.3			_	1.147			4.65	2094	0.81	20							Yes	21.90	9860	4.71	7.5E-23	1 in 1000000
B8		119.0		2.4	2.4	2.4	25	18.1	24.9	90.0	5.4 5.2			7 707.4				1.158		20.962	4.67	2104	0.80	20							Yes	21.74	9799	4.66	1.6E-22	1 in 1000000
B9		120.0		2.4	2.4	2.4	25	18.0	24.9	90.0	5.4 5.2	36.4		2 704.3			-	1.161			4.71	2113	0.80	20							Yes	21.64	9697	4.59	4.2E-22	1 in 1000000
B10		121.3	***************************************	2.4	2.4	2.4	25	18.8	24.7	90.0	5.4 5.2			4 723.6			7.83	1.136			4.73	2194	0.81	20							Yes	22.48	10439	4.76	3.7E-23	1 in 1000000
B11	Maingate Loading	121.8	90.0	2.4	2.4	2.4	25	15.2	40.0	90.0	6.1 4.8		608.0				6.33	1.449	 		4.78	2906	0.76	20	Α	M		2290		8.55	Yes	20.56	12498	2.41	1.8E-08	1 in 1000000
B12		121.0		2.4	2.4	2.4	25	18.6	19.0	90.0	5.4 5.2		353.4					1.011		18.798	4.97	1757	0.81	20							Yes	20.92	7393	4.21	1.0E-19	1 in 1000000
B13		119.7		2.4	2.4	2.4	25	16.8	18.7	90.0	5.4 5.2		314.2					1.054		17.699	5.05	1588	0.78	20	-			-			Yes	19.15	6017	3.79	4.1E-17	1 in 1000000
B14		118.4		2.4	2.4	2.4	25	17.2	18.7	90.0	5.4 5.2		321.6				7.17	1.042	-		4.97	1599	0.79	20				ļ			Yes	19.50	6273	3.92	6.0E-18	1 in 1000000
B15 B41	Devide Orafi andian	117.7	45.0	2.4	2.4	2.4	25	17.3	19.5	90.0	5.4 5.2		337.4				7.21	1.060			4.89	1650	0.79	20	_	-		4000	-	44.00	Yes	19.79	6677	4.05	1.0E-18	1 in 1000000
	Double Goaf Loading	121.0	45.0	2.4	2.4	2.4	2 5 2 5	17.0	37.8	90.0	5.4 5.0 5.3 4.8	33.0	642.6		7.1		7.08	1.380 1.247			4.51	2900	0.78	20 20	A	6		4338		11.26	Yes	22.24	14290		4.0E+00	#NUM! #NUM!
B42 B43	Double Goof Loading	122.0 123.0	45.0 45.0	2.4 2.4	2.4 2.4	2.4 2.4	2 5	18.1 17.9	30.0 35.2	90.0	5.3 4.8 5.8 4.6		543.0 630.1				7.04	1.326			4. 57 4. 60	2484 2901	0.80	20	A .	6		3566 4123		11.14 11.15	Yes	22.58 23.01	12262 14499		4.0E+00 4.0E+00	#NUM!
B43 B44	Double Goaf Loading Maingate Loading / Double Goaf	124.0	22.0	2.4	2.4	2.4	25	18.3	31.3	90.0	5.8 4.6			865.2				1.262			4.68	2682	0.81	20	A .	6	-	2150		8.44	Yes	23.00	13173	2.72	1.8E-10	1 in 1000000
B44	Maingate Loading / Double Goaf	124.0	22.0	2.4	2.4	2.4	25	18.3	31.3	90.0	3.8 4.6	33.8	5/2.8	0 800.2	2 7.6	13.0	7.03	1.202	1.202	23.090	4.08	2082	0.81	20	A	G	J	2150	1	8.44	Yes	23.00	131/3	2.73	1.8E-1U	1 111 1000000

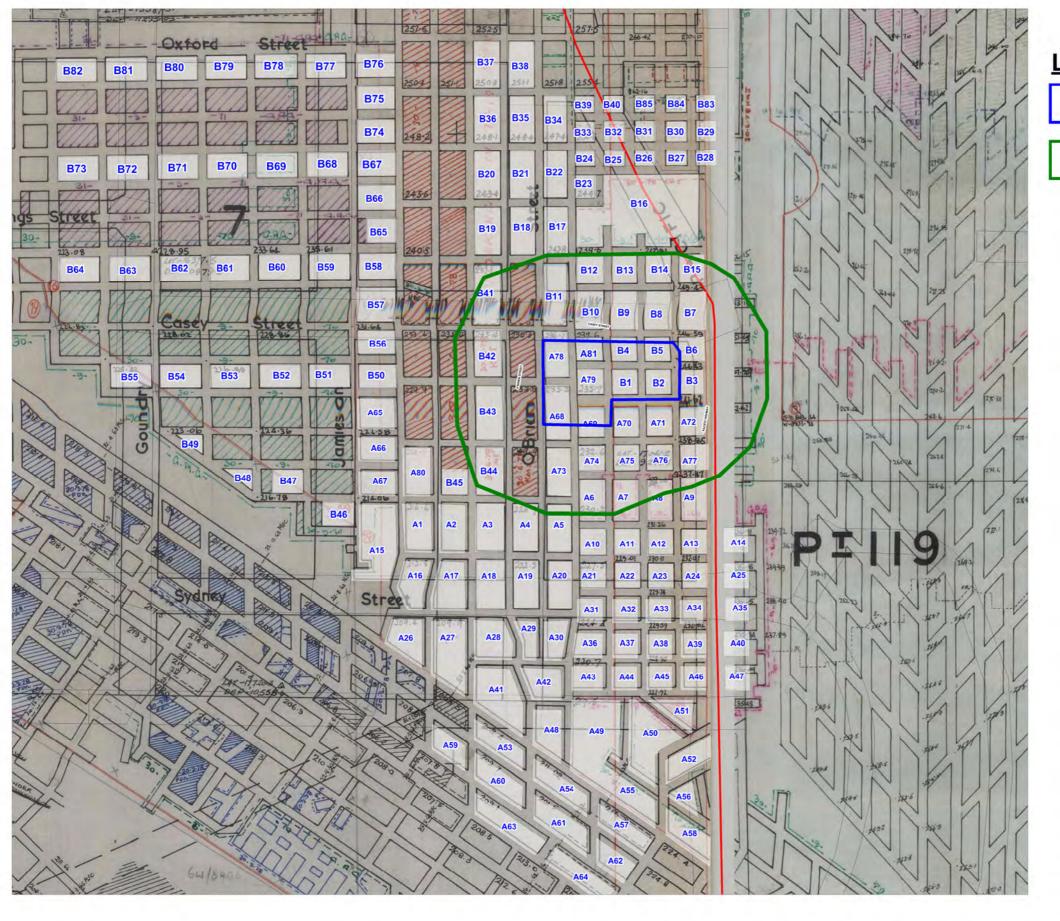
SITE EXTENTS

ANGLE OF DRAW (MINE WORKINGS)

Douglas Partners

Geotechnics | Environment | Groundwater

CLIENT: Akalan Projects Pty Ltd


OFFICE: Newcastle DRAWN BY: JAW

SCALE: 1:1000 DATE: 18.10.2016

TITLE: Site Location Plan
Lake Macquarie Private Hospital Expansion
O'Brien Street, Gateshead

\	PROJECT No:	16471.21
	DRAWING No:	1
	REVISION:	0

SITE EXTENTS

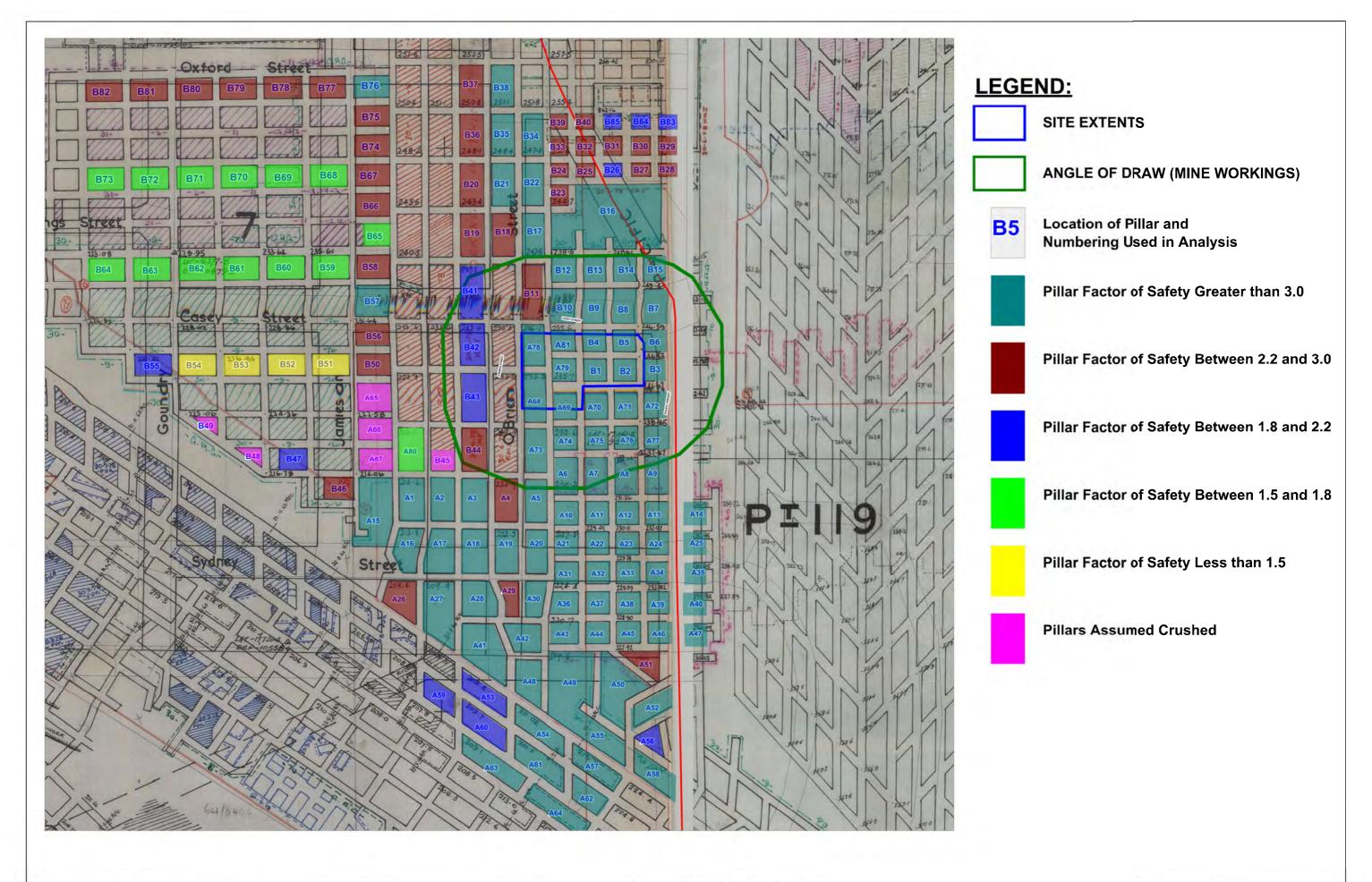
ANGLE OF DRAW (MINE WORKINGS)

B5 Locatio Number

Location of Pillar and Numbering Used in Analysis

Douglas Partners
Geotechnics | Environment | Groundwater

CLIENT: Akalan Projects Pty Ltd

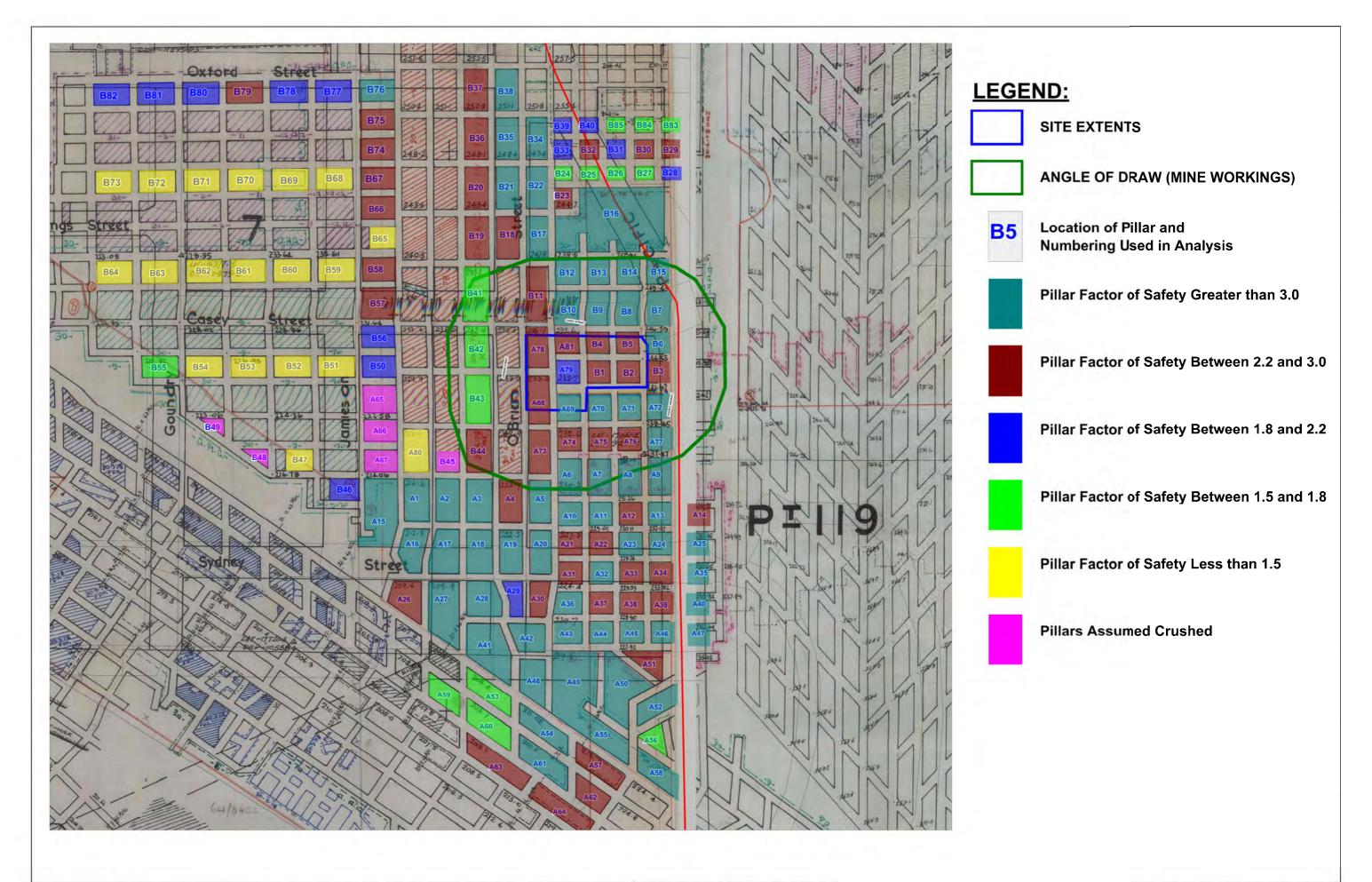

OFFICE: Newcastle DRAWN BY: JAW

SCALE: 1:2500 DATE: 18.10.2016

Lake Macquarie Private Hospital Expansion
O'Brien Street, Gateshead

PROJECT No:	16471.21	
DRAWING No:	2	
REVISION:	0	

CLIENT: Akalan Projects Pty Ltd


OFFICE: Newcastle DRAWN BY: JAW

SCALE: 1:2500 DATE: 18.10.2016

TITLE: Pillar Factors of Safety - Run 2
Lake Macquarie Private Hospital Expansion
O'Brien Street, Gateshead

PROJECT No:	16471.21	
DRAWING No:	3	
REVISION:	0	

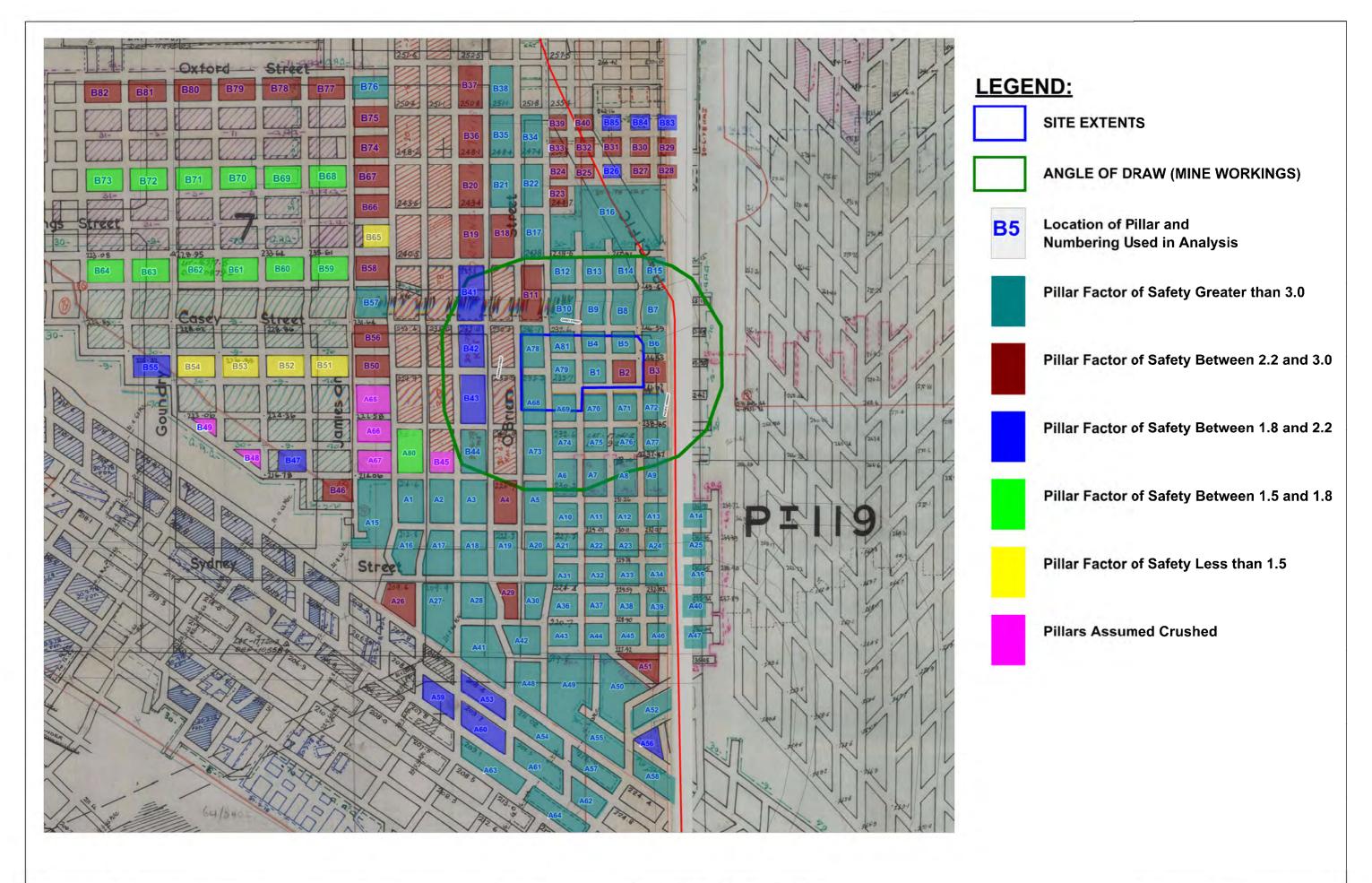
CLIENT: Akalan Projects Pty Ltd

OFFICE: Newcastle DRAWN BY: JAW

SCALE: 1:2500 DATE: 18.10.2016

TITLE: Pillar Factors of Safety - Run 3 (Pillars Decreased by 1 m)

Lake Macquarie Private Hospital Expansion


O'Brien Street, Gateshead

PROJECT No: 16471.21

DRAWING No: 4

REVISION: 0

CLIENT: Akalan Projects Pty Ltd

OFFICE: Newcastle DRAWN BY: JAW

SCALE: 1:2500 DATE: 18.10.2016

TITLE: Pillar Factors of Safety - Run 4 (3 m Working Section)

Lake Macquarie Private Hospital Expansion

O'Brien Street, Gateshead

PROJECT No: 16471.21

DRAWING No: 5

REVISION: 0

Attachment 5: High-level social and economic benefits assessment

Lake Macquarie Private Hospital Redevelopment

High level assessment of benefits from expansion of services at Lake Macquarie Private Hospital

11 October 2021

Disclaimer

This report has been prepared for Ramsay Health Care Limited for use and benefit in accordance with and for the purpose set out in our engagement letter with Ramsay Health Care Limited dated 21 September 2021. In doing so, we acted exclusively in Ramsay Health Care Limited interests.

We accept no responsibility, duty or liability:

- to anyone other than Ramsay Health Care Limited in connection with this report
- to Ramsay Health Care Limited for the consequences of using or relying on it for a purpose other than that referred to above.

We make no representation concerning the appropriateness of this report for anyone other than Ramsay Health Care Limited. If anyone other than Ramsay Health Care Limited chooses to use or rely on it they do so at their own risk.

This disclaimer applies:

- to the maximum extent permitted by law and, without limitation, to liability arising in negligence or under statute;
 and
- even if we consent to anyone other than Ramsay Health Care Limited receiving or using this report.

Liability limited by a scheme approved under Professional Standards Legislation.

Contents

1	Backg	round and purpose	3
	1.1	Background	3
	1.2	Lake Macquarie Private Hospital Redevelopment	3
	1.3	Purpose of this assessment	2
2	Social	and economic benefits	5
	2.1	Beneficiaries of the Lake Macquarie Private Hospital Redevelopment	5
	2.2	Benefit summary	5
	2.3	Impacts if the redevelopment did not occur	8

1 Background and purpose

1.1 Background

Since 1973, Lake Macquarie Private Hospital has provided private health care services to the communities of Newcastle and Lake Macquarie, as well as the broader referral region of Hunter – New England.

Lake Macquarie Private Hospital is a 187-bed medical and advanced surgical hospital owned and operated by Ramsay Health Care Limited. Together with Warners Bay Private Hospital (also owned and operated by Ramsay Health Care Limited), Lake Macquarie Private Hospital treats 35,000 patients a year. It provides specialty disciplines including cardiovascular care, orthopaedics, oncology and rehabilitation. It is also home to the Hunter Cancer Centre, the Hunter Region's only comprehensive private oncology service providing Medical Oncology, Radiation Oncology, Research, Support Services and Education.

Figure 1 - Lake Macquarie Private Hospital

Lake Macquarie Private Hospital was redeveloped in 2015 to include the Hunter Region's first private Emergency Department. It treats more than 12,000 patients a year. The Emergency Department has six beds including a state-of-the-art resuscitation room, triage room and procedure room. Other services include intensive care unit, cardiac theatre, recovery room, coronary care unit and cardiac catheterisation laboratories.

1.2 Lake Macquarie Private Hospital Redevelopment

Ramsay Health Care Limited are currently investigating the redevelopment of Lake Macquarie Private Hospital to increase capacity and meet the private health needs of the local communities. The redevelopment will be completed in five stages, with a total capital expenditure of approximately \$120 million. Stage 1-4 of the redevelopment is proposed to be completed by 2025 and includes:

- A net increase of 57 beds, bringing total beds to 243
- An additional six (6) emergency department bays
- An additional three (3) inpatient theatres, with one (1) being a hybrid theatre
- An additional three (3) day surgery theatres
- Consulting suites
- An additional eight (8) day oncology chairs
- A pharmacy.

The redevelopment will also include compliance upgrades to meet current National Safety and Quality Health Service (NSQHS) Standards and Australasian Health Facility Guidelines (AusHFG), including:

- A new central sterilising unit
- The relocation of the medical imaging onsite, which is currently housed in the medical centre opposite the hospital
- · A fire and smoke control upgrade
- A power supply upgrade
- An emergency generator upgrade.

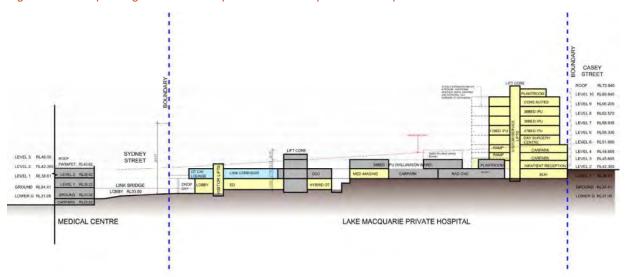


Figure 2 - Concept design for Lake Macquarie Private Hospital Redevelopment

1.3 Purpose of this assessment

PricewaterhouseCoopers Consulting (Australia) Pty Ltd (PwC) were engaged to provide high level guidance on the social and economic benefits associated with the redevelopment of the Lake Macquarie Private Hospital. This was carried out through a qualitative rapid desktop appraisal.

A number of assumptions and limitations underpin this benefit assessment:

- Future expansion activity is contingent on Ramsay Health Care Limited's application to the Lake Macquarie City Council for planning approvals to increase in the allowable development height for Lake Macquarie Private Hospital.
- The scope of the redevelopment is based on supply and demand projections that have not been viewed or verified by PwC. No assessment of the service need or demand for additional beds has been conducted by PwC. All benefits are contingent on current and future demand for services at Lake Macquarie Private Hospital.
- No analysis was performed on alternative options or scenarios in relation to service expansion, local service provision or alternative investments / divestments.
- Benefits are assessed in a qualitative manner, or where possible some metrics were quantified. No assessment of value for money or comparison of benefits to expected costs was made as part of this assessment.

2 Social and economic benefits

2.1 Beneficiaries of the Lake Macquarie Private Hospital Redevelopment

The redevelopment of Lake Macquarie Private Hospital has the potential to deliver a range of benefits to patients and their families and carers, staff of Lake Macquarie Private Hospital, business and industry, the broader NSW community and NSW Government. The beneficiaries of the redevelopment are presented in Figure 3.

Figure 3 - Potential beneficiaries of the Lake Macquarie Private Hospital Redevelopment

Patients of Lake Macquarie Private Hospital

Families, carers and visitors of patients at Lake Macquarie Private Hospital

Staff of Lake Macquarie Private Hospital

Business and industry

Broader NSW community

NSW Government

2.2 Benefit summary

Benefits of the redevelopment of Lake Macquarie Private Hospital are expected to include increased health and wellbeing for patients, access to health care closer to home, improved safety and efficiency, increased resilience and economic benefits of additional local employment. These are explored further below, including identification of expected beneficiaries.

Health and wellbeing benefits for patients

The Lake Macquarie Private Hospital Redevelopment has the potential to improve patient health and wellbeing through increased capacity in inpatient theatres, day theatres, inpatient beds, consulting suites and oncology chairs.

In 2021, Lake Macquarie Private Hospital experienced 22,207 inpatient and day patient admissions, 5,000 day surgery treatments and 13,008 emergency department attendances. Inpatient bed utilisation ranges from 80-90% on weekdays (average 72% total) and theatre utilisation on average is 80% (at peak times over 100%).

The population for Lake Macquarie Local Government Area (LGA) is expected to increase from 202,350 residents in 2016 to 232,700 in 2041 (15% increase). Inpatient and day patient admissions are expected to grow to 30,970 (additional capacity to approximately 9,300 or 30%) and emergency department attendances are expected to grow to 19,245. In absence of redevelopment at Lake Macquarie Private Hospital, this projected activity would not be able to be met within the existing facility.

Expansion of capacity at Lake Macquarie Private Hospital will assist in meeting the growing health care demand in the Hunter-New England region. Failing to meet the growing health service demand would have a detrimental impact on patients' health and wellbeing arising from delay in access to healthcare or bed blockages. Waiting for access to health care mainly involves a prolonged period of decreased health and an affected psychological and social life of the patient in waiting. Provision of additional inpatient theatres, day theatres, inpatient beds and consulting suites will provide greater capacity in the private health system and reduce delays in accessing surgical or medical care, reduce bed block, and therefore improve the health and wellbeing of patients.

¹ NSW Department of Planning, Industry and Environment (2020), Lake Macquarie City Council, 2019 NSW Population Projections, <u>www.planning.nsw.gov.au</u>

In addition, the redevelopment will provide enhanced choice for residents in the Hunter-New England Region, with greater choice over public and private health care options.

Provision of an additional eight oncology chairs, in particular, will improve the health and wellbeing of oncology patients. Cancer is a major cause of illness in Australia and has a substantial social and economic impact on individuals, families and the community. Cancer as a disease group was the leading cause of burden in Australia in 2011, accounting for 19% of the total disease burden². Increased capacity in oncology at Lake Macquarie Private Hospital will reduce delays in access to care and provide care closer to home for cancer patients, improving health and wellbeing outcomes.

By increasing capacity in the health system in the Hunter-New England region, Lake Macquarie Private Hospital redevelopment will also improve health and wellbeing outcomes of public hospital patients. Where there is less pressure on the public health system, through patients receiving health care in the private system, patients of the public health system will experience reduced delays in access to health care. While John Hunter Hospital, the principal referral centre and tertiary public hospital for the Hunter-New England Region, is currently being redeveloped to provide additional inpatient beds, theatres and expanded emergency department, additional capacity will still be required within the public and private health network to meet the future health care needs of the region. In addition, increased capacity in the public health system has flow-on implications to the private health system, increasing demand for private health services.

Access to health care closer to home Where future demand for healthcare services cannot be met at Lake Macquarie Private Hospital, patients may need to access health care within the public system, or at an alternative private service further away from patients' homes.

In the absence of the redevelopment, it is expected that patients would be required to travel to surrounding hospitals (public or alternative private hospitals) to receive treatment, most commonly by car. At times where theatres are at capacity, patients currently have to travel to other private hospitals. As demand increases for services at Lake Macquarie Private Hospital, in absence of redevelopment, a growing number of patients will need to travel to other private hospitals to receive care. As a result, a direct benefit of the redevelopment is the reduced travel costs (both in terms of time saved and resources used) incurred by patients who would no longer be required to travel elsewhere for treatment. Benefits may also arise to families, carers and visitors to patients that do not have to travel additional distances to support or care for patients.

Improved safety and efficiency

The redevelopment of Lake Macquarie Private Hospital will deliver a new central sterilising unit, ensuring that all reusable surgical products and instruments are cleaned and sterilised in accordance with national standards. Proper sterilisation of surgical equipment is vital to the safety of patients and in reducing the risk of microbial contamination and transmission of disease. A new central sterilising unit at Lake Macquarie Private Hospital will support the delivery of quality patient care and reduced risk of hospital surgical infections.

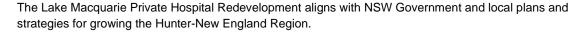
In addition, the redevelopment of Lake Macquarie Private Hospital will improve efficiency and delivery of health care at Lake Macquarie Private Hospital through the new pharmacy and the relocation of the medical imaging onsite, which is currently housed in the medical centre opposite the hospital. Access to an onsite pharmacy has the potential to improve pharmaceutical care for patients and ensure they have access to pharmaceuticals when required, including post-hospital requirements.

The relocation of the medical imaging onsite will reduce the time and cost associated with the current requirement for vehicle transfers to offsite medical imaging. Onsite access to medical imaging will ensure timely access to care through faster diagnoses and improve staff efficiency and patient flows.

² Australian Institute of Health and Welfare (2020), Cancer Overview, [cited at www.aihw.gov.au, published 14 December 2020, viewed 27 September 2021]

Onsite car parking will also provide greater safety and efficiency for patients, staff and visitors. The provision of car parking onsite eliminates the need for patients, staff and visitors to cross the road to access Lake Macquarie Private Hospital, reducing the safety risks and improving accessibility.

Increased resilience



Increased resilience through a power supply upgrade and an emergency generator will be delivered through the redevelopment. The upgrades will increase power supply capacity to support increased demand for services and will be designed for service continuity during events such as emergencies and power outages.

A new emergency generator ensures that during an event, emergency procedures can continue to be delivered and that the hospital can support business as usual activities in addition to the increased demand from disaster response activities. The readiness and capacity to cater for surges in demand at critical times extends to the other hospitals within the health network which will be supported by the emergency generator located at Lake Macquarie Private Hospital. The reliability of power supply will have flow on benefits in terms of avoided delays / backlog of procedures caused by the downtime from power outages and will result in increased safety and better health outcomes for the community.

Increased capacity in the private health care system also provides increased resilience across both the private and public health care system. This has been evident in the recent COVID-19 pandemic where the private system (including Lake Macquarie Private Hospital) has supported the public system by providing additional capacity to the public system within private hospitals to support the freeing-up of beds to support COVID-19 patients. Additional capacity at Lake Macquarie Private Hospital provides increased resilience across the public and private health network for similar incidents in the future.

Economic benefits of additional local

Lake Macquarie Private Hospital is among Lake Macquarie's largest employers, with a current workforce of 792 nursing, allied health, medical specialist and support staff.³ The Lake Macquarie Private Hospital Redevelopment is expected to provide 169 new staff roles and 20 new visiting medical officer (VMO), anaesthetist and assistant surgeon roles. 4 The redevelopment will attract skilled workers to the Hunter – New England Region and provide local jobs for local residents, growing the local economy and making the Hunter Region a greater attraction for skilled health care workers. This aligns with the NSW Department of Planning and Environment (2018) Greater Newcastle Metropolitan Plan 2036, specifically Strategy 4 – Grow health precincts and connect the health network. ⁵ Attraction of speciality health care workers to the region will provide improved access to expertise for both public and private patients.

In addition to the new workforce associated with the on-going operation of the new services provided by the Lake Macquarie Private Hospital Redevelopment, construction of the project will create additional jobs and economic activity during the construction period. It is estimated that construction will create 800 - 1,000 direct and in-direct jobs over the 26-month construction period (February 2023 – April 2025).⁶ The number of direct construction jobs is estimated at 108 full-time equivalent jobs over the construction

³ Provided by Ramsay Health Care Limited for the purpose of this assessment

⁴ Provided by Ramsay Health Care Limited for the purpose of this assessment

⁵ NSW Department of Planning and Environment (2018), Greater Newcastle Metropolitan Plan 2036, www.planning.nsw.gov.au, September 2018

⁶ Provided by Ramsay Health Care Limited for the purpose of this assessment

period.⁷ This is equivalent to approximately \$9.5 million (in 2021/22 prices) in additional household income over the construction period.⁸

2.3 Impacts if the redevelopment did not occur

In the absence of the redevelopment of Lake Macquarie Private Hospital, there is a potential that the facility would be unable to continue the delivery of service at the existing site. This would place an increased burden on the already at / close to capacity public health system. Increased demand for health care within the public system will have two key impacts:

- Detrimental health and wellbeing outcomes for the Hunter-New England communities through increased delays in accessing care, overcrowding and increased travel times and costs to access care further from home. Lake Macquarie Private Hospital provides the only private emergency department in the Hunter-New England Region and, as such, patients would need to access public emergency departments should Lake Macquarie Private Hospital no longer provide this service. Public emergency departments are currently available at Belmont Hospital (9km / 13 mins from Lake Macquarie Private Hospital) and John Hunter Hospital (10km / 14 mins from Lake Macquarie Private Hospital. Both of these emergency departments are currently operating at or close to capacity.⁹
- Increased costs to the NSW Government through both operating and capital expenditure. The movement of patients from the private to public health care system will mean that the NSW Government would experience greater burden in the delivery of health care. As the average cost of care at a public hospital is \$5,030 per inpatient separation (in 2021/22 prices)¹⁰, this would equate to an additional operating cost to the NSW Government of \$81.9 million (in 2021/22 prices) in 2025 based on projected inpatient admissions of 16,280 in 2025 post-redevelopment¹¹ In addition, the NSW Government would also experience additional operating costs associated with the 14,690 day-only admissions, 5,000 day surgery attendances and 19,245 emergency department attendances not considered within this calculation. In addition, as there is greater pressure and demand for the public health system, the NSW Government may need to invest in the expansion of capacity to meet the future demand. This investment could require significant capital investment from the NSW Government to ensure the continued delivery of care for patients.

Further, Lake Macquarie Private Hospital plays an important role in the Hunter-New England community. It is one of the largest employers in Lake Macquarie, providing 792 skilled jobs and a source of economic activity. Since commencement of ownership over Lake Macquarie Private Hospital in 2002, Ramsay Health Care Limited has invested significantly in the facility to provide the bed base and services it provides today. Since 2002, the total investment in the facility is \$91.1 million (nominal), including investment in furniture, fittings and equipment. This represents significant investment in providing private health care to the local community, including creation of jobs and economic activity.

It also plays an important role in the character of the local community through the following endeavours that would be lost were Lake Macquarie Private Hospital unable to continue the delivery of service:

- Major sponsorship of the Ramsay Health Care Lake Macquarie Running Festival.
- Support of the Music in the Park community event held on Friday nights through summer
- Sponsorship of two major sporting clubs.

Lake Macquarie Private Hospital Redevelopment PwC

NSW Treasury (2021) NSW Treasury Employment Calculator, [cited at www.treasury.nsw.gov.au, published 19 September 2021, viewed 28 September 2021, assumes construction industry average direct employment multiplier of 0.9 full-time equivalent jobs per \$1 million expenditure.

⁸ Australian Bureau of Statistics (2021), Average Weekly Earnings, Australia, May 2021, Released 19 August 2021, adopted average weekly earnings by industry (construction), full time adults by industry, original

⁹ Bureau of Health Information (2021), Healthcare Observer, Emergency Department statistics – Belmont Hospital and John Hunter Hospital, Apr-Jun 2021 (estimated using time from arrival to leaving and comparison across public hospitals in local health district – Belmont (53%), John Hunter Hospital (51.5%) leaving within 4 hours

Australian Institute of Health and Welfare (2019), Spending on admitted patients, [cited at www.aihw.gov.au, published 22 October 2019, viewed 27 September 2021] – assumes the national weighted average unit (NWAU) for John Hunter Hospital for 2014-15 across all acute admitted patients for 2014/15 – escalated to 2021/22 dollars using consumer price index of 1.6%

¹¹ Inpatient admission projects post-development provided by Ramsay Health Care Limited for the purpose of this assessment.

Social and economic benefits

- Breakfast club for local primary school.
- Membership of both Warners Bay business network and Hunter Chamber of Business.

